Imaginary Empty Balls

The answer, therefore, which the seventeenth century gave to the ancient question … “What is the world made of?” was that the world is a succession of instantaneous configurations of matter — or material, if you wish to include stuff more subtle than ordinary matter…. Thus the configurations determined there own changes, so that the circle of scientific thought was completely closed. This is the famous mechanistic theory of nature, which has reigned supreme ever since the seventeenth century. It is the orthodox creed of physical science…. There is an error; but it is merely the accidental error of mistaking the abstract for the concrete. It is an example of what I will call the ‘Fallacy of Misplaced Concreteness.’ This fallacy is the occasion of great confusion in philosophy. (Whitehead 1967: 50-51)

(….) This conception of the universe is surely framed in terms of high abstractions, and the paradox only arises because we have mistaken our abstractions for concrete realities…. The seventeenth century had finally produced a scheme of scientific thought framed by mathematics, for the use of mathematics. The great characteristic of the mathematical mind is its capacity for dealing with abstractions; and for eliciting from them clear-cut demonstrative trains of reasoning, entirely satisfactory so long as it is those abstractions which you want to think about. The enormous success of the scientific abstractions, yielding on the one hand matter with its simple location in space and time, on the other hand mind, perceiving, suffering, reasoning, but not interfering, has foisted onto philosophy the task of accepting them as the most concrete rendering of fact. (Whitehead 1967: 54-55)

Thereby, modern philosophy has been ruined. It has oscillated in a complex manner between three extremes. These are the dualists, who accept matter and mind as on an equal basis, and the two varieties of monists, those who put mind inside matter, and those who put matter inside mind. But this juggling with abstractions can never overcome the inherent confusion introduced by the ascription of misplaced concreteness to the scientific scheme of the seventeenth century. (Whitehead 1967: 55)

Alfred North Whitehead in Science and the Modern World

In the UK, for example, 97 percent of money is created by commercial banks and its character takes the form of debt-based, interest-bearing loans. As for its intended use? In the 10 years running up to the 2008 financial crash, over 75 percent of those loans were granted for buying stocks or houses—so fuelling the house-price bubble—while a mere 13 percent went to small businesses engaged in productive enterprise.47 When such debt increases, a growing share of a nation’s income is siphoned off as payments to those with interest-earning investments and as profit for the banking sector, leaving less income available for spending on products and services made by people working in the productive economy. ‘Just as landlords were the archetypal rentiers of their agricultural societies,’ writes economist Michael Hudson, ‘so investors, financiers and bankers are in the largest rentier sector of today’s financialized economies.’ (Raworth 2017, 155)

Once the current design of money is spelled out this way—its creation, its character and its use—it becomes clear that there are many options for redesigning it, involving the state and the commons along with the market. What’s more, many different kinds of money can coexist, with the potential to turn a monetary monoculture into a financial ecosystem. (Raworth 2017, 155)

Imagine, for starters, if central banks were to take back the power to create money and then issue it to commercial banks, while simultaneously requiring them to hold 100 percent reserves for the loans that they make—meaning that every loan would be backed by someone else’s savings, or the bank’s own capital. It would certainly separate the role of providing money from the role of providing credit, so helping to prevent the build-up of debt-fuelled credit bubbles that burst with such deep social costs. That idea may sound outlandish, but it is neither a new nor a fringe suggestion. First proposed during the 1930s Great Depression by influential economists of the day such as Irving Fisher and Milton Friedman, it gained renewed support after the 2008 crash, gaining the backing of mainstream financial experts at the International Monetary Fund and Martin Wolf of the UK’s Financial Times. (Raworth 2017, 155-156)

Kate Raworth in Doughnut Economics

~ ~ ~

The dematerialization of the value concept boded ill for the tangible world of stable time and concrete motion (Kern 1983). Again, the writer Jorge Luis Borges (1962, p. 159) captured the mood of the metaphor: (Mirowski 1989, 134. Kindle Location 2875-2877)

I reflected there is nothing less material than money, since any coin whatsoever (let us say a coin worth twenty centavos) is, strictly speaking, a repertory of possible futures. Money is abstract, I repeated; money is the future tense. It can be an evening in the suburbs, or music by Brahms; it can be maps, or chess, or coffee; it can be the words of Epictetus teaching us to despise gold; it is a Proteus more versatile than the one on the isle of Pharos. It is unforeseeable time, Bergsonian time . . . (Mirowski 1989, 134-135. Kindle Location 2877-2881)

It was not solely in art that the reconceptualization of value gripped the imagination. Because the energy concept depended upon the value metaphor in part for its credibility, physics was prodded to reinterpret the meaning of its conservation principles. In an earlier, simpler era Clerk Maxwell could say that conservation principles gave the physical molecules “the stamp of the manufactured article” (Barrow and Tipler 1986, p. 88), but as manufacture gave way to finance, seeing conservation principles in nature gave way to seeing them more as contingencies, imposed by our accountants in order to keep confusion at bay. Nowhere is this more evident than in the popular writings of the physicist Arthur Eddington, the Stephen Jay Gould of early twentieth century physics: (Mirowski 1989, 135. Kindle Location 2881-2887)

The famous laws of conservation and energy . . . are mathematical identities. Violation of them is unthinkable. Perhaps I can best indicate their nature by an analogy. An aged college Bursar once dwelt secluded in his rooms devoting himself entirely to accounts. He realised the intellectual and other activities of the college only as they presented themselves in the bills. He vaguely conjectured an objective reality at the back of it all some sort of parallel to the real college though he could only picture it in terms of the pounds, shillings and pence which made up what he would call “the commonsense college of everyday experience.” The method of account-keeping had become inveterate habit handed down from generations of hermit-like bursars; he accepted the form of the accounts as being part of the nature of things. But he was of a scientific turn and he wanted to learn more about the college. One day in looking over the books he discovered a remarkable law. For every item on the credit side an equal item appeared somewhere else on the debit side. “Ha!” said the Bursar, “I have discovered one of the great laws controlling the college. It is a perfect and exact law of the real world. Credit must be called plus and debit minus; and so we have the law of conservation of £. s. d. This is the true way to find out things, and there is no limit to what may ultimately be discovered by this scientific method . . .” (Mirowski 1989, 135. Kindle Location 2887-2898)

I have no quarrel with the Bursar for believing that scientific investigation of the accounts is a road to exact (though necessarily partial) knowledge of the reality behind them . . . But I would point out to him that a discovery of the overlapping of the different aspects in which the realities of the college present themselves in the world of accounts, is not a discovery of the laws controlling the college; that he has not even begun to find the controlling laws. The college may totter but the Bursar’s accounts still balance . . . (Mirowski 1989, 135-136. Kindle Location 2898-2902)

Perhaps a better way of expressing this selective influence of the mind on the laws of Nature is to say that values are created by the mind [Eddington 1930, pp. 237–8, 243]. (Mirowski 1989, 136. Kindle Location 2903-2904)

Once physicists had become inured to entertaining the idea that value is not natural, then it was a foregone conclusion that the stable Laplacean dreamworld of a fixed and conserved energy and a single super-variational principle was doomed. Again, Eddington stated it better than I could hope to: (Mirowski 1989, 136. Kindle Location 2904-2907)

[Classical determinism] was the gold standard in the vaults; [statistical laws were] the paper currency actually used. But everyone still adhered to the traditional view that paper currency needs to be backed by gold. As physics progressed the occasions when the gold was actually produced became career until they ceased altogether. Then it occurred to some of us to question whether there still was a hoard of gold in the vaults or whether its existence was a mythical tradition. The dramatic ending of the story would be that the vaults were opened and found to be empty. The actual ending is not quite so simple. It turns out that the key has been lost, and no one can say for certain whether there is any gold in the vaults or not. But I think it is clear that, with either termination, present-day physics is off the gold standard [Eddington 1935, p. 81]. (Mirowski 1989, 136. Kindle Location 2907-2913)

The denaturalization of value presaged the dissolution of the energy concept into a mere set of accounts, which, like national currencies, were not convertable at any naturally fixed rates of exchange. Quantum mechanical energy was not exactly the same thing as relativistic energy or thermodynamic energy. Yet this did not mean that physics had regressed to a state of fragmented autarkies. Trade was still conducted between nations; mathematical structure could bridge subdisciplines of physics. It was just that everyone was coming to acknowledge that money was provisional, and that symmetries expressed by conservatiori principles were contingent upon the purposes of the theory in which they were embedded. (Mirowski 1989, 136. Kindle Location 2913-2918)

Increasingly, this contingent status was expressed by recourse to economic metaphors. The variability of metrics of space-time in general relativity were compared to the habit of describing inflation in such torturous language as: “The pound is now only worth seven and sixpence” (Eddington 1930, p. 26). The fundamentally stochastic character of the energy quantum was said to allow nuclear particles to “borrow” sufficient energy so that they could “tunnel” their way out of the nucleus. And, inevitably, if we live with a banking system wherein money is created by means of loans granted on the basis of near-zero fractional reserves, then this process of borrowing energy could cascade, building upon itself until the entire universe is conceptualized as a “free lunch.” The nineteenth century would have recoiled in horror from this idea, they who believed that banks merely ratified the underlying real transactions with their loans. (Mirowski 1989, 136-137. Kindle Location 2918-2925)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s