Author Archives: Meta Capitalism

Chimeras and Holy Grails

Because the great controversies of the past often reach into modern science, many current arguments cannot be fully understood unless one understands their history.

ERNST MAYR 1982, 1, in McCloskey, Deirdre Nansen; Ziliak, Steve. The Cult of Statistical Significance (Economics, Cognition, And Society)

Too large a proportion of recent ‘mathematical’ economics are mere concoctions, as imprecise as the initial assumptions they rest on, which allow the author to lose sight of the complexities and interdependencies of the real world in a maze or pretentious and unhelpful symbols.

John Maynard Keynes

One of its central tenets is that the “real” nature of the social world imposes restrictions on individuals’ knowledge. (Marqués 2016, 2)

(….) If theoretical practice in economics is going to have authentic epistemic relevance, it is necessary to shift the attention from standard models developed within the current bookish tradition to the solution of those concrete problems which result from open ended, intervenible and conflictive economic processes, dominated by radical uncertainty. (Marqués 2016, 3)

A processes oriented economics would have to provide a different kind of theoretical practice adequate for examining sequences of feasible economic events (i.e., the main developments that those processes could plausibly adopt). This kind of practice offers points of intervention to those skills, qualifications, common sense and political abilities that are needed to manage these processes. (Marqués 2016, 3)

Science and economics

Let me advance a brief comment about the relation between science and economics. This book does not take an irrational or anti-scientific stance. On the contrary, in the domain of natural phenomena modern science has shown extraordinary successful results. But the same cannot be said when social processes are at stake, and I have tried to offer some of the reasons (ultimately, ontological) for this failure. So, I do not share the idea of those authors who think that economics can be scientific (as much as natural sciences), and that such an economic theory, once found, would solve those economic problems that the best theoretical tradition assigned to economics a long time ago (growth, employment and development with fairness and equality). (Marqués 2016, 5)

Particularly, I think that the dream of having a successful theory of expectation formation is largely a chimera, and indeed I dismiss the necessity of having such a theory. Neither governmental authorities nor any other economic actor may count on being able in a sure (scientific) way to intervene and make people entertain “correct” expectations. But as we try to show in this book economic actors (including the state) do not need a scientific theory able to guarantee their goals in order to intervene systematically upon the economy. Instead they can apply feasible sequences as well as direct (practical) knowledge and skills to cope with the situation and push the process in the desired direction. (Marqués 2016, 5)

It is also important to examine the relation between science and economics from another perspective. Theoretical physics has been successfully applied to a wide range of circumstances of our world. This could be done thanks to the development of associated technologies (different kinds of engineering founded on physical theory). Some may think that nowadays economics is at a pre-technological stage (like physics was sometime ago), and that what is needed is more time (and more knowledge, mainly mathematical knowledge) to develop a sort of economic engineering. Popper was confident in the benefits of fragmentary social engineering. The call to elaborate an alternative economics oriented to solve practical problems of our world could be interpreted this way. (Marqués 2016, 6)

Our analysis of deliberate mechanisms like Prospect Theory and Decision Making Models gives testimony of the kind of practical results that can be obtained by this road. But I suspect that in reference to more traditional economic problems like those mentioned at the beginning of this section, a similar expectation is unfounded and doomed to failure. As far as economic phenomena result from open ended processes as we have described them there is no possibility of shaping and controlling them by means of social engineering similar to what happens in the case of natural sciences. The specific domains where neither uncertainty nor conflicts between lobbyists that defend different and opposite interests exist. These technologies are designed for “leading” in a scientific way the economic processes. And I suspect that it is not possible to hope that we may count on similar tools in the near future. (Marqués 2016, 6)

Gustavo Marqués (2016) A Philosophical Framework for Rethinking Theoretical Economics and Philosophy of Economics

DETERMINISM AND FREE WILL IN ECONOMICS

Most people do not really want freedom, because freedom invovles responsibility, and most people are frightened of responsibility.

— Sigmund Freud

Most of the really fundamental debates in economics today are very old debates indeed. But economists—and not just the economists of the post-war period—have been scrupulous in avoiding many of them. Other social sciences do not suffer the same defect, and one wonders why this might be the case in economics. The key philosophical difference between the view of economics put forward by the marginalists and the one championed in this book is that the former believe that all human action is pre-determined while the author of the present book believes in a large amount of freedom in human affair. (Pilkington 2016, 341)

(….) Economists today instinctively sign on to a sort of vulgar Newtonian view of the world. That is, they instinctively think in terms of a space in which a variety of forces play themselves out—often, in the case of the marginalists, at a given instant in time. But this sort of philosophy was long dead in the humanities at the time Keynes was writing. Rather, the philosophies of Moore and Keynes start from the seat of consciousness. We do not start from the vulgar assumption that reality ‘is’ in some sense a space with deterministic forces playing themselves out. This schema, thought construction or model is fully recognized in Keynes to be something cooked up by consciousness. (Pilkington 2016, 345)

This, I think, accounts for why many economists find Keynes’ writings so obscure. It also accounts for why those with training in philosophy or psychology will find them far more accessible than those with training in mainstream economics, physics or engineering. Keynes’ works are written from the point-of-view of the reasoning subject. This is the natural starting point for Keynes. Consciousness comes first; models and metaphors are adopted later. This is why in Keynes’ work we are from time to time put in the shoes of the investor trying to make decisions about the future. In mainstream economics, agents making investment and consumption decisions are reduced to little objects that reason in a pre-determined manner. In Keynes, by contrast, economic agents making investment and consumption decisions are full subjects endowed with a consciousness that is identically structured to the one that we ourselves possess. Thus in order to understand the choices made by these agents, we do not simply reduce them to little puppets that behave how we assume them to behave but rather we must try to get ‘inside their heads’. (Pilkington 2016, 345)

ECONOMIC MODELING: A PSYCHOLOGISTIC EXPLAINATION

Can anything be imagined so ridiculous, that this miserable and wretched creature, who is not so much as master of himself, but subject to the injuries of all things, should call himself master and emperor of the world, of which he has not power to know the least part, much less to command the whole?

— Michel de Montaigne

Throughout this book, we have been rather harsh on economists. We have accused them of engaging in all sorts of silly behaviour, of constructing irrelevant theories and of being a key force darkening the doorway of knowledge and spreading ideology. But so far we have not really sought out motivation. Are we to assume that most economists working today are nefarious crooks and scoundrels? I should think not. Most economists working today are well-meaning people who genuinely want to make the world a better place. They are men and women who truly believe that they are constructing useful knowledge that will help humanity progress as a species in the future. That they typically make the world a worse place and cloud the judgments of people is not altogether their fault. (Pilkington 2016, 353)

What is it then that drives these people to Bedlam and back? This is something that the present writer has thought about quite a lot. I have come to this conclusion: these men and women are chasing after a Holy Grail, one that has been sought since time immemorial. At first it was sought in the sphere of religion, but after this it was sought in the field of philosophy and, finally, science. Today the sphere in which this Holy Grail is most aggressively sought is in the field of economics. What then characterises this Holy Grail? Well, it is the Holy Grail of perfect knowledge. It is the drive that exists in many intellectually minded men and women to find a sort of perfection, a total and pristine knowledge that would make them, in a very real sense, omnipotent or, at least, omniscient. This Holy Grail was first formulated in the modern age by the French mathematician and astronomer Pierre-Simon Laplace: (Pilkington 2016, 353-354)

We ought then to regard the present state of the universe as the effect of its anterior state and the cause of the one which is to follow. Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective situation of the beings who compose it — an intelligence sufficiently vast to submit this data to analysis — it would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atom; for it, nothing would be uncertain and the future, as the past, would be present in its eyes. (Laplace 1902, p. 4)

For some rather odd reason, this thought experiment has become known as ‘Laplace’s Demon’ today. In fact, readers of older philosophers will recognise that this is identical to how many philosophers conceived of an image of God. For many writers, God is an omniscient being that has total knowledge of all causes and effects and has a sort of ‘single formula’ in His immediate consciousness that explains everything across time and space. He is, in this conception, outside of time and space and thus merely observes everything happening at once in the form of this timeless, perfect formula. (Pilkington 2016, 354)

When economists try to build totalizing models, they are doing something similar. They are trying to figure out all the mechanisms — the causes and effects — that pertain in the economy at all times, and then they are trying to reduce these to a single model. If they could ever find their Holy Grail, they would then, in the words of Laplace, have ‘the future, as the past, present in their eyes’. They are reaching for perfection. In a strange psychological sense, they are seeking to become like the old conceptions of God that many philosophers and theologians held. Again, they are not the only ones that do this. Many physicists reach for the same Holy Grail and try to generate ‘theories of everything’. But it is in economics, which is not only a far more inexact discipline but also a far more ambitious one, that this fantasy has done the most damage. (Pilkington 2016, 354)

The psychological roots of this tendency are inherently narcissistic. By that, I do not mean that economists are all pathologically narcissistic. No, psychologists have long recognised that all of us have narcissistic tendencies buried within our minds. Somewhere buried within our minds, we all have an image of perfection that haunts us…. On occasion, such a narcissistic image can become an obsession and do serious psychological and physical damage to a person [and society]…. There is no such thing as true perfection just as there is no such thing as a unified theory of how the economy works that will be valid across time and space. These are fantasies and illusions that, if we do not understand them to be illusions, can lead us down wayward paths. (Pilkington 2016, 354-355)

We have argued throughout the book that economics today is predominantly ideology. But just as certain forms of religious discourses were the key ideologies of the past, economics too activates these deep psychological structures within its practitioners to ensure that they remain stuck on the treadmill, chasing ghosts rather than engaging with the real world. Certain religious discourses offered its adherents a sort of union with God if they studied sacred texts hard enough. This kept these conduits of ideology away from the real world and ensured that they engaged in largely useless activity in their fruitless search for omniscience by connecting with God. Economics today does something similar in that it encourages its adherents to build models that are supposed to be true across time and space. The adherents are then encouraged to test these models against data using highly problematic econometric techniques, after which the whole discipline starts to ruminate if they stop yielding accurate results. (Pilkington 2016, 355)

The result is a stagnant discipline. Every few years, economic theory will go into crisis as some real world event calls into question the predominant models. Economists will then go back and reconstruct the doctrines in light of recent events only to have them fall apart once more when something changes in the economic world. It is a bit like watching an unfortunate though well-meaning man build and rebuild his house along an earthquake fault line always insisting that this time the house will survive. Or a cult devotee that continuously says that the end of the world is coming on a given date only to push this date back every time the end of the world does not arrive. (Pilkington 2016, 355-356)

It is in the tendency to model itself — which has deep psychological roots — that leads economics down this dead end and makes it a sort of clown science. If economists would just drop the silly image of timeless truths and recognise that in economics we deal with contingent historical events, we would all be better off. But his cannot happen unless the economics profession as a whole reorients its narcissistic image away from trying to search out Holy Grails and towards trying to manage as best they can in a highly complex and changing world. If this were ever achieved the manner in which argument and debate take place within the discipline would completely and utterly change. This would be wonderful but it would also mean that economics would have to stop being an ideology. This would, in turn, mean that economists would have to stop projecting the image that they hold crystal balls and can see the future. That might not only be a blow to their egos but it might, in a strong sense, also diminish the standing that they hold as ideologues in the political and social arena. Whether economics can ever exist as a non-ideology is an open question. Personally, I believe that it can. But, given I do not pretend to have a crystal ball, only posterity can pass absolute judgement on the matter. (Pilkington 2016, 356)

Telos and Economics

In the organic complex of habits and thought which make up the substance of an individual’s conscious life, the economic interest does not lie isolated and distinct from all other interests.
— Thorstein Veblen

Economics is essentially a moral “science,” and not a natural science. That is to say, it employs introspection and judgment of value.  
— John Maynard Keynes, letter to Roy Harrod in 1938

Consciousness cannot be computable.
— Roger Penrose

It is the “end” that lends “means” its importance, not vice versa … There cannot be any doubt that there is a causal relationship between the importance of the end, and that of the means.
— Eugen Von Böhm-Bawerk

As a matter selective necessity, man is an agent. He is, in his own apprehension, a centre of unfolding, impulsive activity — “teleological” activity. He is an agent seeking in every act the accomplishment of some concrete, objective, impersonal end….
— Thorstein Veblen, The Theory of the Leisure Class, Chapter I

[Humans are seeking subjective and personal ends; Veblen followed the spirit of the age in not recognizing this and his adoption of classical Darwinian bias to impersonal mechanism and depersonalization of social explanations. Social science was to be modeled after physics and impersonal mechanistic classical Darwinian ideas which were also seeking to model themselves after physics.]

Telelogical explanations of action have been largely extruded from the natural sciences, even if we take account of the doctrine of “vitalism” which proved to be the most stubborn and chameleon-like of adversaries. After all, it is no longer a subject of credible speculation to attribute goal-seeking or purpose to bodies (individual or collective) that are considered to lack consciousness. (Roth 2008, 5)

However, such explanations of behavior and their resultant consequences are of crucial relevance in the behavioral sciences and in the forming of judgments in the daily business of life—where the values, preferences, motivational beliefs, and purposes of people and their institutions are of vital operational interest. To circumvent them—or to seek to “rise above” [or below] them (via exalted supra-deterministic forces) … or what is equivalent in practice, to treat them as just “being there” in the form of “given” items on a “menu” of commodities or “unexplained factor endowments” without ontogeny—is to create a self-neutering cordon sanitaire between the entire subject and the real world which is dependent on its historical trajectory. (Roth 2008, 5)

Norman L. Roth (2008) Telos and Technos: The Teleology of Economic Activity and the Origins of Markets

Even such purely academic theories as interpretations of human nature have profound practical consequences if disseminated widely enough. If we impress upon people that science has discovered that human beings are motivated only by the desire for material advantage, they will tend to live up to this expectation, and we shall have undermined their readiness to moved by impersonal ideals. By propagating the opposite view we might succeed in producing a larger number of idealists, but also help cynical exploiters to find easy victims. This specific issue, incidentally, is of immense actual importance, because it seems that the moral disorientation and fanatic nihilism which afflict modern youth have been stimulated by the popular brands of sociology and psychology [and economics] with their bias for overlooking the more inspiring achievements and focusing on the dismal average or even the subnormal. When, fraudulently basking in the glory of the exact sciences, the psychologists [, theoretical economists, etc.,] refuse to study anything but the most mechanical forms of behavior  often so mechanical that even rats have no chance to show their higher faculties  and then present their mostly trivial findings as the true picture of the human mind, they prompt people to regard themselves and others as automata, devoid of responsibility or worth, which can hardly remain without effect upon the tenor of social life.

Andreski 1973, 33-34, in Social Sciences as Sorcery

Stories about Taoism taken out of historical context*, speculations about abiogenesis unrooted in fact** (Geoff 2019); parables about Umwelt (an organism’s ‘world-view’) reduced to a “social insect” with a ganglion for a brain as human proxies devoid of personality and real human behavior (Shiozawa 2019); facile ex cathedra assertions that human minds capable of contemplating “means” and “ends” and  looking before leaping, let alone reflecting on moral and ethical choices — values — are really nothing more than mere Turing Machines and therefore mathematically modellable with genetic computational algorithms (Shiozawa 2019); claims the entire world economy can be modeled after a fitness climbing tick aka “social insects” because human beings behave like them 99% of the time  (Shiozawa 2019) have little to do with understanding “basic economic ideas or of the history of economic thought.” (Norman L. Roth on RWER) Shiozawa claims he has now provided the micro-foundations of an entire world’s macro-economics in his “if-then” algorithmic computations by simply reducing all human behavior to the level of a tick. Evolution is the New Central Dogma of economics according to his theory.

What some of these stories have in common is the desire to impose upon human economic behavior a simplifying story meant to enable mathematical tractability so encompassing it can be called a world-view.  Mirowski’s history of economics “More Heat than Light” eloquently tells the history of the “eternal folly of imitating other more ‘truth-seeking’ {usually physical} sciences, by simply imposing them on economics” and the “farcical ‘physics envy’ & slavish imitation of mid-19th century thermodynamics … [n]ot to mention mathematically trained Irving Fisher’s slavish mimicry of Boyle’s Law of gases, to derive his ‘Quantity theory of Money’.” (Norman L. Roth on RWER)

There are far more proximate causes than the big bang we can study to gain a fuller picture of economics, many of which are amenable to reasonable mathematical modeling within sensible limits. We can learn a lot from behavioral economics and its use of experiments within certain limits; human beings are after all to one degree or another habitual creatures. We can even learn something from our evolving understanding of evolutionary theory if we are careful to distinguish the difference between claims of mechanism vs. metaphor. We learn, for example, that many human behavioral traits are shared with animals; cooperation is as much a part of evolution and life as competition and that too much of the later can be actually self-destructive. But there are also important differences that can not be overlooked or ignored or explained away with scientism’s hand-waving and just-so stories.

* Historical context counts; Taoism (along with Confucianism) was a religion and moral philosophy (metaphysical theory of the universe) that was more about maintaining harmony between heaven and earth, which translated into social context meant harmony between the ruling upper class and the ruled lower-classes aimed at maintaining social harmony and civil and political stability. The real interesting aspect of Taoism was its moral precepts that were meant to guide social and economic behavior so-as to maintain social harmony. The ethical precepts have more relevance to economics than some recent Western reinterpretation of what it means to modern science. The idea that the ruler’s behavior must accord to a moral code of conduct embodied in the Way provided a basis upon which the mandate of heaven could be either considered in operation (i.e., they ruled fairly, justly, and upheld moral standards)  or not in operation (i.e., they ruled unjustly, unethically, and for selfish gain and not for the benevolence of the people). These considerations were the ancient Chinese method of determining if the ruler needed to be removed or remain in place; at least that was the theory.

Chemical self organisation, life

Self-organisation has been observed in chemical systems as well (Prigogine, 1980), and exploration of this has revealed an intriguing path that may lead to life (Kauffman, 1993).

(….) One of the great puzzles about life is that a living cell is an assembly of very special molecules in very particular relationships. Given that much of the universe seems to degenerate into randomness, it seems impossibly unlikely that the components necessary for rudimentary life would ever come together. Catalytic cycles provide a mechanism for generating a particular small group of chemicals, rather than a random soup.

(….) Living organisms are made of carbon molecules of many different kinds. We have known for a long time that carbon was capable of very complicated chemistry and that this must have something to do with the existence of life. Only in the past few decades, however, has growing knowledge of catalytic cycles led to the realisation that they might lead to an accumulation of ever-more complicated carbon chemistry that might ultimately become a living cell. This would involve not just one level of self-organisation and emergence, but probably many levels, each level giving rise to new kinds of emergent behaviour. It is thus possible to conceive how something with the vast complexity of a living cell might have originated from inanimate materials through many levels of self organisation (Kauffman, 1993).

In any case, regardless of how life began, the modern understanding of biochemistry makes it clear that living organisms are vastly sophisticated examples of complex self-organising systems.

Geoff Davies () Society, Nature: An introduction to the new systems-based, life-friendly economics

** Interestingly enough abiogenesis is not part of Neo-Darwinian evolutionary theory and it is careless history and misleading story-telling to imply it is. If such speculation could become fact then it would finally be possible to reduce biology to physics, but at this point in time the only way we know how to successfully accomplish that is murder. One doesn’t need to tell highly speculative and misleading stories about abiogenesis to recognize the complexity and emergent nature of human individual and social interactions. Abiogenesis is no more relevant in understanding economics than is the big bang. The real irony is that the lessons from quantum physicsi.e., fundamental physics cannot exclude ‘the observer’are more applicable to economics than either the big bang or abiogenesis. Such speculation is more akin to Shiozawa’s effort to reduce human economics to econophysics by reducing complex human mind and behavior to the level of brainless “social insect” and then modeling bio-mechanical stimulus-response behavior with genetic algorithms. Shiozawa correctly calls out the mainstream economic assumption of a Homo economicus with unlimited information and “farsightedness in time” as “conspicuous,” but it is as equally conspicuous to assume humans know nothing more than than a brainless insect. Unfortunately for Shiozawa human beings transcend mere stimulus-response behavior far more than 1% of the time. Slow and fast are not the full story of human thinking. The invention of financial instruments of mass destruction transcend the thinking capacity of ants and ticks, even dogs, no matter how “social” some think they are. The fatal flaw of Yoshinori Shiozawa’s new Central Dogma—Microfoundations of Evolutionary Economics—is succinctly stated in Stanislav Andreski’s quote above.

Since this historical [Miller-Urey] experiment, the field has veritably exploded. In the last three decades, the origin of life has been the subject of dozens of books, scores of essays, thousands of articles, relating an enormous amount of experimental and theoretical work. Periodicals devoted exclusively to the subject have been founded. Textbooks dedicate whole chapters to it. The reason for this upsurge of interest is simple. As I have attempted to show …, we have come to know enough about life to draw the basic blueprint according to which all extant living organisms are constructed. Scientists faced with the blueprint (or, rather, with their own version of the blueprint, because they tend to see life through different glasses, depending on their fields of specialization) find the problem of how the plan materialized almost inescapable. This turned out to be my case as well. (de Duve 1991: 110)

But I must add a warning. If not considered totally outlandish any more, the field still remains largely confined to speculation. When it comes to events that happened several billion years ago, hard data are scarce and, perforce, are supplemented by reasoning and imagination, if not blind faith. Yet, life did start somewhere, sometime, somehow. Trying to reconstruct the events that led to its birth holds almost irresistible fascination, especially now that we have available so much new knowledge on the nature of life and so many new tools for digging into the past and approaching the problem. (de Duve 1991: 110)

The tale is told in simple historical style, without any of the probability weightings, plausibility assessments, and other precautionary periphrases that it requires.[2] These will come in due course. According to my reconstruction, emerging life went through four main successive stagesor “worlds,” to use a popular expression: the primeval prebiotic world, the thioester world, the RNA world, and the DNA world. This version of the script differs from the current favorite mainly by the insertion of a thioester world. I consider this insertion essential because I cannot accept the view of an RNA world arising through purely random chemistry. (de Duve 1991: 112-113)

[2] The readers’ attention is called to this point, lest they be misled by the apparently dogmatic style of the script. All statements should be read as conditional and hypothetical. (112)

I have quoted Monod’s declaration “The Universe was not pregnant with life,” to which he added “nor the biosphere with man.” I have made it clear that I disagree with his first statement. Life belongs to the very fabric of the universe. Were it not an obligatory manifestation of the combinatorial properties of matter, it could not possibly have arisen naturally. By ascribing to chance an event of such unimaginable complexity and improbabilityremember Hoyle’s allegory of the Boeing 747 emerging from a junk yardMonod does, in fact, invoke a miracle. Much as he would have refused this description, he sides with the creationists. (de Duve 1991: 217)

Christian de Duve (Nobel Laureate) Blueprint for a Cell: The Nature and Origin of Life. Neil Patterson Publishers. 1991.

[T]here are a couple of important things that evolution is not, misleading claims by creationists [and materialists] notwithstanding. For example, evolution is not a theory of the origin of life, for the simple reason that evolution deals with changes in living organisms induced by a combination of random (mutation) and nonrandom (natural selection) forces. By definition, before life originated there were not mutations, and therefore there was no variation; hence, natural selection could not possibly have acted. This means that the origin of life is a (rather tough) problem for physics and chemistry to deal with, but not a proper area of inquiry for evolutionary biology. (Pigliucci 2002: 76)

(….) Evolution is also most definitely not a theory of the origin of the universe. As interesting as this question is, it is rather the realm of physics and cosmology. Mutation and natural selection, the mechanisms of evolution, do not have anything to do with stars and galaxies. It is true that some people, even astronomers, refer to the “evolution” of the universe, but this is meant in the general sense of change through time, not the technical sense of the Darwinian theory….. The origin of the universe, like the origin of life, is of course a perfectly valid scientific question, even though it is outside the realm of evolutionary biology. (Pigliucci 2002: 77)

(….) Is the fact that evolutionary theory can explain neither the origin of life nor the formation of the universe a “failure” of Darwinian evolution? Of course not. To apply evolutionary biology to those problems is like mixing apples and oranges, or like trying to understand a basketball play by applying the rules of baseball. Creationists [and materialists] often do this, but their doing so betrays either a fundamental misunderstanding of science or a good dose of intellectual dishonesty—neither of which should be condoned. (Pigliucci 2002: 78)

(….) [Creationists often claim “It’s a debate about origins.”] This is … a recurring fallacy in debates on creation-evolution…. Briefly, the problem is that creationists do not make a distinction between different origins debates. For them the origin of the universe, the origin of life, and the origin of species are all one and the same. (Pigliucci 2002: 175)

Of course, they are not. Evolutionary biology deals only with the origin of species, and even that is only a relatively minor part of what interests evolutionary biologists. Darwinian theories have absolutely nothing to say about either the origin of life or the origin of the universe—the first one being a problem for biochemistry and biophysics, the second a problem for physics and cosmology. Again, therefore, this fallacy reflects a deep misunderstanding of the nature of science, one that scientists themselves need to correct [or not perpetuate themselves] on every possible occasion. (Pigliucci 2002: 175)

Massimo Pigliucci (2002) Denying Evolution: Creationism, Scientism, and the Nature of Science

ORIGIN OF LIFE

Whether the proponents of hell or heaven theories finally convince their rivals of the most plausible scenario of the origin of the first replicating structures, it is clear that the origin of life is not a simple issue. One problem is the definition of life itself. From the ancient Greeks up through the early nineteenth century, people from European cultures believed that living things possessed an élan vital, or vital spirit—a quality that sets them apart from dead things and nonliving things such as minerals or water. Organic molecules, in fact, were thought to differ from other molecules because of the presence of this spirit. This view was gradually abandoned in science when more detailed study of the structure and functioning of living things repeatedly failed to discover any evidence for such an élan vital, and when it was realized that organic molecules could be synthesized from inorganic chemicals. Vitalistic ways of thinking persist in some East Asian philosophies, such as the concept of chi, but they have been abandoned in Western science for lack of evidence and because they do not lead to a better understanding of nature. (Scott 2009: 25-26)

How, then, can we define life? According to one commonly used scientific definition, if something is living, it is able to acquire and use energy, and to reproduce. The simplest living things today are primitive bacteria, enclosed by a membrane and not containing very many moving parts. But they can take in and use energy, and they can reproduce by division. Even this definition is fuzzy, though: what about viruses? Viruses, microscopic entities dwarfed by tiny bacteria, are hardly more than hereditary material in a packet—a protein shell. Are they alive? Well, they reproduce. They sort of use energy, in the sense that they take over a cell’s machinery to duplicate their own hereditary material. But they can also form crystals, which no living thing can do, so biologists are divided over whether viruses are living or not. They tend to be treated as a separate special category. (Scott 2009: 26)

(….) The origin of life is a complex but active research area with many interesting avenues being investigation, though there is not yet consensus among researchers on the sequence of events that led to living things. But at some point in Earth’s early history, perhaps as early as 3.8 billion years ago but definitely by 3.5 billion years ago, life in the form of simple single-celled organisms appeared. Once life evolved, biological evolution became possible. (Scott 2009: 26-27)

This is a point worth elaborating on. Although some people confuse the origin of life itself with evolution, the two are conceptually separate. Biological evolution is defined as decent of living things from ancestors from which they differ. Evolution kicks in after there is something, like a replicating structure, to evolve. So the origin of life preceded evolution, and is conceptually distinct from it. Regardless of how the first replicating molecule appeared, we see in the subsequent historical record the gradual appearance of more complex living things, and many variations on the many themes of life. Predictably, we know much more about evolution than about the origin of life. (Scott 2009: 27)

— Eugenie C. Scott (2009) Evolution vs. Creationism: An Introduction

Yin-Yang and Three Obediences

The ancient Chinese philosophers believed that the ultimate reality, which underlies and unifies the multiple phenomena we observe, is intrinsically dynamic. They called it Tao the way, or process, of the universe. For the Taoist sages all things, whether animate or inanimate, were embedded in the continuous flow and change of the Tao. The belief that everything in the universe is imbued with life has also been characteristic of indigenous spiritual traditions throughout the ages. In monotheistic religions, by contrast, the origin of life is associated with a divine creator.

(….) The association of manhood with the accumulation of possessions fits well with other values that are favored and rewarded in patriarchal culture expansion, competition, and an “object-centered” consciousness. In traditional Chinese culture, these were called yang values and were associated with the masculine side of human nature. They were not seen as being intrinsically good or bad. However, according to Chinese wisdom, the yang values need to be balanced by their yin, or feminine, counterparts expansion by conservation, competition by cooperation, and the focus on objects by a focus on relationships. As one of us (F.C.) has long argued, the movement toward such a balance is very consistent with the shift from mechanistic to systemic and ecological thinking that is characteristic of our time (Capra 1982, 1996).

Capra, Fritjof (2016) The Systems View of Life: A Unifying Vision (p. 1). Cambridge University Press. Kindle Edition.

(….) There are striking parallels between complex systems and the old wisdom of Taoism, which arose from close observation of nature and of human affairs. The Taoist world view is probably best known for its concepts of yin and yang. Yin and yang are often characterised as the female and male principles, but the Tao view is that all things in life have opposites, or polarities, that are also manifestations of yin and yang. Other examples are dark and light, yielding and resistance, intuition and rationality, contemplation and action. In the Tao view there are times for contemplation and times for action. When the world is stable it may not be a good use of energy to try to force change, but if the world is changing, particularly if it is in crisis, then small actions may have large consequences. (….) Taoism counsels that a life lived only at one polarity will be a restricted life. For a full realisation of potential we should not become stuck in an extreme, but should balance yin with yang. Taoism seems to have distilled an essence from the living world: healthy living systems do not depend on competition alone, nor on cooperation alone, but balance both in varying degrees. (Davies, Geoff. Economy, Society, Nature: An introduction to the new systems-based, life-friendly economics.World Economics Association Books Book 3. Kindle Locations 2109-2118).

(….) We can leave the question of what ‘reality’ is ‘behind’ our observations to the metaphysicians and theologians. Unfortunately many scientists became enamoured of the idea that science is in the business of ‘reading the mind of God’. It’s another distraction, unless God’s mind is very changeable and context-dependent. So too can we leave the question of ‘truth’ to others. It is apparently a shocking claim to many people that science is not in the business of revealing Truth. Rather, science is, to emphasise the difference, in the business of inventing useful stories, stories that may be rather loose or may be very precise. (Davies, Geoff. Economy, Society, Nature: An introduction to the new systems-based, life-friendly economics. World Economics Association Books Book 3. Kindle Locations 2402-2408).

— Geoff Davies (2019) Economy, Society, Nature.

[T]he external ki of women is rooted in yin, and so by their ki women are apt to be excitable, petty, narrow, and temperamental. As they live confined to their homes day in and day out, theirs is a very private life and their vision is limited. Therefore, among women compassionate and honest minds-and-hearts are rare indeed. That is why Buddhism says that women are profoundly sinful and have difficulty in achieving {buddhahood}.

Nakae Tōju (573) Learning.

My family tried to raise me as an obedient girl [according to the Three Obediences]: [my mother told me] obey your father, obey your husband, obey your son. And I asked her; if I keep obeying everyone, when does my life start?

A Young Courageous Women Breaking With Tradition

Let it be made clear that Japan has come a long way towards equality of the sexes since Fukuzawa Yukichi’s comments that follow. Progress still needs to be made. Women are too frequently relegated to subservient roles within Japanese corporate culture (e.g., serving tea, being secretaries, or both). Nevertheless, the popular Western appropriation of Eastern philosophy and religion frequently distorts it to such an extent it no longer resembles its factual meaning in historical context and is hardly recognizable. One would never recognize the original message of Lao Tzu or the meaning of the Tao by the sanitized and popularized misappropriation above as Sung-Hae Kim makes obvious:

The Taoists exchanged the metaphoric term “Heaven” (though they still used it occasionally) for a fuller term Tao 道 (literally, the way), and developed the most systematic metaphysics in ancient China. Tao is defined as the indescribable and unnameable origin of all things and the constant principle present in the phenomenal world. Because of their preoccupation with Tao and its ultimate standard that transcends all human relative values, the Taoists were the most radical critics in ancient China. What characterized them was their that man is only a tiny part of the whole transformation of Tao and man has to learn Tao from the phenomenal world. (Kim 1985, 13) (….) Traditionally Lao Tzu has been thought of as the first of the Taoists and senior contemporary of Confucius. The historicity of the person Lao Tzu is still controversial and can probably never be solved. What we have is the text of the 81 short chapters of the book Lao Tzu—now generally accepted to have been written in the fourth or third century B.C.E. (Kim 1985, 101) According to the traditional version, the first chapter of Lao Tzu begins with the indescribability of the Way (Tao 道) and the concluding chapter sums up the way of the sage (sheng-jen 聖人) who embodies the Way concretely in the world. (Kim 1985, 102) The most important term for the Ultimate in Lao Tzu is Tao. The clear definition of Tao as the indescribable ultimate source and origin of all that exists and the constant nurturing principle at the phenomenal level is the most important contribution of Lao Tzu made to the metaphysical thought of ancient China. The famous chapter 1 describes both the transcendent and the immanent character of this ultimate reality. (Kim 1985, 106) As the origin of all things, it is nameless because it is transcendent, but as the immanent principle principle of the phenomenal world, it is called the mother of the world. The concept of Tao that both transcends the phenomenal world as its source and also is present within it as the constant principle, is in fact the metaphysical elaboration of the traditional concept of Heaven. For Lao Tzu, the Tao was both the supreme principle and the absolute reality; it was the reality behind the origin of the universe. (Kim 1985, 107) Heaven (the Tao) is the ultimate reference at the beginning and the end. With its characteristically anthropocentric outlook, the Confucian sage ultimately stands before Heaven for the final judgment of his innocence and success. (Sung-Hae Kim 1985, 138)

— Sung-Hae Kim 1985, 138, The Righteous and the Sage: A Comparative Study on the Ideal Images of Man in Biblical Israel and Classical China. Sogang University.

Taoism was a religion, a metaphysics, and a philosophy that was no less concerned with “reading the mind of God” the Ultimate and Transcendent Reality which they defined as the Tao which the “sage” (sheng-jen 聖人) or “perfect man” (chih-jen) sought to live and rule according to the principles of the Way. Davies is projecting a distorted, shallow, and false Westernized view of Taoism apparently copying Capra and contrasting it with his stereotyped view of early Western ideas as exemplified in the ideas of Newton and others who saw themselves as discovering the laws of God in their scientific discoveries. When so-called scientists engage in facile story telling on topics they know little about and thereby misrepresent an entire religion or philosophy or history for mere rhetorical purposes they are unwittingly demeaning science by reducing it to scientismmyth making. In reality the Torah’s ideal of the righteous man and the Taoist ideal of the perfect man have more in common than Davies’s scientism does with real, sober, and careful science.

Historical context counts; Taoism (along with Confucianism) was a religion and moral philosophy (metaphysical theory of the universe) that was more about maintaining harmony between heaven and earth, which translated into social context meant harmony between the ruling upper class and the ruled lower-classes aimed at maintaining social harmony and civil and political stability. The real interesting aspect of Taoism was its moral precepts that were meant to guide social and economic behavior so-as to maintain social harmony. The ethical precepts have more relevance to economics than some recent Western reinterpretation of what it means to modern science. The idea that the ruler’s behavior must accord to a moral code of conduct embodied in the Way provided a basis upon which the mandate of heaven could be either considered in operation (i.e., they ruled fairly, justly, and upheld moral standards)  or not in operation (i.e., they ruled unjustly, unethically, and for selfish gain and not for the benevolence of the people). These considerations were the ancient Chinese method of determining if the ruler needed to be removed or remain in place; at least that was the theory.

When scientists spoof religion they are doing no better than when creationists spoof science. Spotting the Spoof is a critical skill required for both religionists and scientists and is best served by a sound philosophy (which means ‘the love of wisdom’) that wisely discerns the difference between facts, meanings, and values. Science and religion can only be self-critical of their facts. The moment departure is made from the stage of facts, reason abdicates or else rapidly degenerates into a consort of false logic. Science as sober science is careful; science as story telling is not. Being able to spot the spoof allows one to “distinguish between good, sober, and restrained science on the one hand, and non-empirical metaphysics, fantasy, myth and ideology on the other.” When scientists engage in story telling with little or no regard for fact or truth they are espousing an ideology “transcending the category of provisional scientific theories … [and] constituting a world-view.'” (Alexander and Numbers 2010, Biology and Ideology: From Descartes to Dawkins, Kindle Locations 4215)

For serious, historically accurate, and relevant studies of economics and religion one can look to Michael Hudson (2018) … and forgive them their debts: Lending, Foreclosure and Redemption from Bronze Age Finance to the Jubilee Year or Robert H. Nelson (2001) Economics as Religion: From Samuelson to Chicago and Beyond. Or another classic is Tomas Sedlacek (2011) Economics of Good and Evil: The Quest for Economic Meaning from Gilgamesh to Wall Street. From a Buddhist perspective one can look to Clair Brown (2017) Buddhist Economics: An Enlightened Approach to the Dismal Science. From a Muslim perspective one could look to Ismael Hossein-zadeh (2014) Beyond Mainstream Explanations of the Financial Crisis: Parasitic Finance Capital. For a good analysis of the failures of so-called Compassionate Conservatism see Lew Daly (2009) God’s Economy: Faith-Based Initiatives & the Caring State. No doubt there are many more.

~ ~ ~

The equality of men and women Fukuzawa Yukichi 1885, 9–10, 45– 6 (11– 13, 39– 40)

Confucius said, “Whenever there is work to be done, the young will take on its burden; whenever there is wine and food, the old will be the first to enjoy it” [Analects ii. 8]. Borrowing this saying to describe men and women in Japan, “Whenever there is work to be done, women will take on its burden; whenever there is wine and food, men will be the first to enjoy it.”

Women of our country have no responsibility either inside or outside their homes, and their position is very low. Consequently, their sufferings and pleasures are very small in scale. It has been the custom for hundreds and even thousands of years to make them as feeble as they are, and it is not an easy matter now to lead both their minds and bodies to activity and to vigorous health. There are animated discussions on the education of women. No doubt education will be effective. When taught, women will acquire knowledge and the arts.

(….) I once compared the present efforts in schools for the education of women in Japan to caring for a dwarf pine in a pot and hoping it will grow into a big tree. Without doubt, fertilizer is important in a tree’s growth. When it is administered in proper measures and moisture and temperature are controlled, the pine will put out branches and leaves in profusion and their green luster will be beautiful. However, that beauty will be limited to the beauty of a potted plant. One can never hope for its growth into the sublimity of a hundred-foot giant. To rectify the sad state of women’s ignorance, the use of school instruction and such means will not be in vain. A woman may become well versed in science or in literature, even well informed in law. Such a woman may well compete with men in the classroom, but when she returns home from school, in what position does she find herself? (Heisig, James W.; Kasulis, Thomas P.; Maraldo, John C.. Japanese Philosophy: A Sourcebook (Nanzan Library of Asian Religion and Culture) (p. 601). University of Hawaii Press. Kindle Edition.)

At home, she owns no property of her own, and in society she cannot hope for a position of any consequence. The house she lives in is a man’s house and the children she brings up are her husband’s children. Where would such a person, without property, without authority of any sort, and with no claim on the children she bears, and herself a parasite in a man’s house, make use of the knowledge and learning she acquired? Science and literature will be of no use. Even less would her knowledge in law serve her. The normal reaction of the general public is to regard a woman who discusses law and economics as liable to bring misery upon herself. (Heisig, James W.; Kasulis, Thomas P.; Maraldo, John C.. Japanese Philosophy: A Sourcebook (Nanzan Library of Asian Religion and Culture) (pp. 601-602). University of Hawaii Press. Kindle Edition.)

(….) On top of all this, suppose that school education were Confucian or Buddhist, and taught such sayings to the effect that women and tools are irredeemable, or that it is a virtue for women to lack wisdom, or that the five faults that women are liable to and the three obediences[8] they must observe are proof that women are sinful by birth. Such education is less than useful, for it serves only to oppress women and to beat into them a kind of “modesty” and “reticence,” resulting in the deformation of even their physical organs—ears, eyes, nose, and tongue. Yet some educators never realize the results of their training. They have veritably been doing nothing but hindering the healthy development of women’s minds and bodies.

(….) Confucianism characterizes men as yang (positive) and women as yin (negative); that is, men are like the heavens and the sun, and women are like the earth and the moon. In other words, one is high and the other is humble. There are many men who take this idea as the absolute rule of nature, but this yin-yang theory is the fantasy of the Confucians and has no proof or logic. Its origins go back several thousand years to dark and illiterate ages when men looked around and whenever they thought they recognized pairs of something, one of which seemed to be stronger or more remarkable than the other, they called one yang and the other yin. For instance, the heavens and the earth looked very much like the ceiling and the floor of a room. One of them was low and trampled on with feet, but the other was high and beyond reach. One was classed yang and the other yin. The sun and the moon are both round and shining; one is very bright, even hot, while the other is less bright. Therefore, the sun is yang and the moon is yin. This is the level of the logic behind this theory and we today should regard it as no more than childish nonsense. (Heisig, James W.; Kasulis, Thomas P.; Maraldo, John C.. Japanese Philosophy: A Sourcebook (Nanzan Library of Asian Religion and Culture) (pp. 602-603). University of Hawaii Press. Kindle Edition. Bold Added.)

This theory simply attached itself to people’s minds with not much of a basis. On seeing a pair of similar objects, one somewhat superior to the other, they classified the first in the yang category and the other in the yin category. Then they would think up ideas to embellish their theories. That was all. Therefore, between men and women, there never existed any such distinctions as yin and yang. The idea itself being fictional to begin with, there could not have been any actual features to suggest such a theory. But some scholars of the Confucian trend must have felt like belittling women, and for no other reason than their own prejudice, classed women as yin. It was a great nuisance on the part of women to have been thus involved in an empty theory which extended to the sun and the moon and heavens and earth, and which had nothing to do with women’s relations to men. It was truly a misfortune for women to be thus made victims of the Confucian scholars’ ignorance of science. (Heisig, James W.; Kasulis, Thomas P.; Maraldo, John C.. Japanese Philosophy: A Sourcebook (Nanzan Library of Asian Religion and Culture) (p. 603). University of Hawaii Press. Kindle Edition. Bold Added.)

8. [The five faults are indocility, discontent, slander, jealousy, and silliness. The three obediences are obedience to one’s father while in his care, obedience to one’s husband when married, and obedience to one’s son after one’s husband’s death. Emphasis added.]

Phishing for Phools

Mainstream economics takes the particular features of capitalism a very recent form of economic organisation in human history as if they were universal, timeless and rational. It treats market exchange as if it’s the essential feature of economic behaviour and relegates production or work a necessity of all provisioning to an afterthought. It also focuses primarily on the relationship between people and goods (what determines how many oranges we buy?) and pays little attention to the relationships between people that this presupposes. It values mathematical models based on if-pigs-could-fly assumptions more than it values empirical research; so it pays little attention to real economies, having little to say about money and debt, for example! Predictably, the dismal science failed to predict the crisis. When the UK’s Queen Elizabeth asked why no one saw the crisis coming, the economists’ embarrassment was palpable. (Sayer 2015, 23-24)

Andrew Sayer (2015) Why We Can’t Afford the Rich

[M]any of our problems come from the nature of the economic system itself. If business people behave in the purely selfish and self-serving way that economic theory assumes, our free-market system tends to spawn manipulation and deception. The problem is not that there are a lot of evil people. Most people play by the rules and are just trying to make a good living. But, inevitably, the competitive pressures for businessmen to practice deception and manipulation in free markets lead us to buy, and to pay too much for, products that we do not need; to work at jobs that give us little sense of purpose; and to wonder why our lives have gone amiss. (…) The economic system is filled with trickery and everyone needs to know about it.” (Akerlof & Shiller, 2015, viii)

[F]ree markets do not just deliver this cornucopia that people want. They also create an economic equilibrium that is highly suitable for economic enterprises that manipulate or distort our judgment, using business practices that are analogous to biological cancers that make their home in the normal equilibrium of the human body. (Akerlof and Shiller 2015, x)

George A. Akerlof and Robert J. Shiller (2015) Phishing for Phools: The Economics of Manipulation & Deception

Many of the quotes above are from economists, experts in their field, some Nobel Prize-winning economists. One thing is clear; the Great Recession shook the very foundations of economics to its core. Only the blind leading the blind can pretend today that something isn’t amiss within the field of economics. The quotations above only represent a small sampling of the discontent rising to the surface within the field of economics today. There is actually a revolt underway in the younger generation of economic graduate students who lived through the Great Recession and the near melt down of the world’s economy yet witnessed their teachers being confounded by the Queen’s question. And if we value our children’s and our grandchildren’s economic future we can no longer afford to simply leave economics to the expertsthe Econocracy—for as these young graduate students tell us, we do so at our own peril. Amartya Sen in his essay Rational Fools: A Critique of the Behavioral Foundations of Economic Theory takes us on an intellectual journey back in time to the thoughts and reflections of one of the founders of the field of economics:

In his Mathematical Psychics, published in 1881, Edgeworth asserted that ‘the first principle of Economics is that every agent is actuated only by self-interest’. This view has been a persistent one in economic models, and the nature of economic theory seem to have been much influenced by this basic premise…. I should mention that Edgeworth himself was quite aware that this so-called first principle of Economics was not a particularly realistic one. Indeed, he felt that ‘the concrete nineteenth century man is for the most part an impure egoist, a mixed utilitarian’. This raises the interesting question as to why Edgeworth spent so much of his time and talent in developing a line of inquiry the first principle of which he believed to be false. The issue is not why abstractions should be employed in pursuing economic questionsthe nature of inquiry makes this inevitablebut why would one choose an assumption which he himself believed not merely inaccurate in detail but fundamentally mistaken? (Sen 1982, 84-85)

Amartya Sen (1982) Rational Fools

Free License of Creativity

Our discussion of the nature of physical concepts has shown that a main reason for formulating concepts is to use them in connection with mathematically stated laws. It is tempting to go one step further and to demand that practicing scientists deal only with ideas corresponding to strict measurables, that they formulate only concepts reducible to the least ambiguous of all data: numbers and measurements. The history of science would indeed furnish examples to show the great advances that followed from the formation of strictly quantitative concepts. (Holton and Brush 2001, 170)

(….) The nineteenth-century physicist Lord Kelvin commended this attitude in the famous statement:

I often say that when you can measure what you are speaking about and express it in numbers you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of meagre and unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of Science, whatever the matter may be. (“Electrical Units of Measurement”)

Useful though this trend is within its limits, there is an entirely different aspect to scientific concepts: indeed it is probable that science would stop if every scientist were to avoid anything other than strictly quantitative concepts. We shall find that a position like Lord Kelvin’s (which is similar to that held at present by some thinkers in the social sciences) does justice neither to the complexity and fertility of the human mind nor to the needs of contemporary physical science itself—not to scientists nor to science. Quite apart from the practical impossibility of demanding of one’s mind that at all times it identify such concepts as electron only with the measurable aspects of that construct, there are specifically two main objections: First, this position misunderstands how scientists as individuals do their work, and second, it misunderstands how science as a system grows out of the contribution of individuals. (Holton and Brush 2001, 170-171)

(….) While a scientist struggles with a problem, there can be little conscious limitation on his free and at times audacious constructions. Depending on his field, his problem, his training, and his temperament, he may allow himself to be guided by a logical sequence based on more or less provisional hypotheses, or equally likely by “feelings for things,” by likely analogy, by some promising guess, or he may follow a judicious trial-and-error procedure.

The well-planned experiment is, of course, by far the most frequent one in modern science and generally has the best chance of success; but some men and women in science have often not even mapped out a tentative plan of attack on the problems, but have instead let their enthusiasms, their hunches, and their sheer joy of discovery suggest the line of work. Sometimes, therefore, the discovery of a new effect or tool or technique is followed by a period of trying out one or the other applications in a manner that superficially almost seems playful. Even the philosophical orientation of scientists is far less rigidly prescribed than might be supposed. (Holton and Brush 2001, 170-171)

Gosse's Dilemma and Adam's Navel

‘Tis a dangerous thing to ingage the authority of Scripture in disputes about the Natural World, in opposition to Reason, lest Time, which brings all things to light, should discover that to be false which we had made Scripture to assert.

Thomas Burnet, Archaelogiae Philosophicae, 1692

In the late nineteenth century intellectuals assumed that truth had spiritual, moral, and cognitive dimensions. By 1930, however, intellectuals had abandoned this broad conception of truth. They embraced, instead, a view of knowledge that drew a sharp distinction between “facts” and “values.” They associated cognitive truth with empirically verified knowledge and maintained that by this standard, moral values could not be validated as “true.” In the nomenclature of the twentieth century, only “science” constituted true knowledge. Moral and spiritual values could be “true” in an emotional or nonliteral sense, but not in terms of cognitively verifiable knowledge. The term truth no longer comfortably encompassed factual knowledge and moral values.

Julie A. A. Reuben (1996) The Making of the Modern University: Intellectual Transformation and the Marginalization of Morality

Truth

Certain people have different standards for recognizing “truth.” Given access to the same facts, two individuals can look at an issued and reach utterly different conclusions, to the point where they believe those with a different opinion belong somewhere on a spectrum from stupid to perverse…. (Asher 2012: xiv)

(….) The creationist has something at stake, some worldview or allegiance, that makes a fair, honest view of the data behind Darwinian evolutionary biology impossible. Why?

(….) [T]here is an obvious explanation for antipathy toward Charles Darwin among various anti-evolutionist groups of the last 150 years, groups that are often connected to one kind of intense religious creed or another: they think Darwin threatens their worldview. Contributing to this conviction are those biologists who portray evolution as tied to atheism, who help convince the devout that a natural connection of humanity with other organisms is incompatible with their religion. Compounding things further is the fact that adherence to many religious worldviews is not flexible, and any scientific theory or philosophy that seems to threaten certain beliefs must be wrong, whatever some scientist may say about evidence. (Asher 2012: xvi)

Coyne says there is one way to be rational, and any of this stuff about alternative “truth” is relativist nonsense not worth the flatscreen monitor on which it is written:

What, then, is the nature of “religious truth” that supposedly complements “scientific truth”?… Anything touted as a “truth” must come with a method for being disproved—a method that does not depend on personal revelation. … It would appear, then, that one cannot be coherently religious and scientific at the same time. That alleged synthesis requires that with one part of your brain you accept only those things that are tested and supported by agreed-upon evidence, logic, and reason, while with the other part of your brain you accept things that are unsupportable or even falsified.

I disagree, and would argue that there are many things in life that deserve the descriptor “truth” but are not amenable to rational disproof. Coyne is absolutely correct to say that coddling the irrational—those for whom “religious truth” means stoning adulterers or drinking poisoned Kool-Aid—is incompatible with science and, more generally, civil society. However, while science is a-religious, it is not anti-religious, at least in the important sense that it does not (indeed, cannot) concern itself with phenomena beyond what we rationally perceive. It is not only possible to portray science as lacking fatal consequences for those religious tenets that concern things we cannot empirically observe (such as purpose or agency in life), but it is precisely what scientists have got to do to make a compelling case to the public. Coyne tosses “religion” into the same dumpster as any passing superstition, and actively encourages the perception that science is corrosive to any religious sentiment. Yes, there are religious claims that are demonstrably wrong in an empirical sense. … However, such specific claims do not do justice to the religion integrally tied into the identity of many lay-people and scientists alike, an identity that by any meaningful definition is worthy of the name “truth.” (Asher 2012: xvii-xviii)

Asher, Robert J. Evolution and Belief [Confessions of a Religious Paleontologist]. Cambridge: Cambridge University Press; 2012; p. xiv.

When we reflect on scienceits aims, its values, its limitswe are doing philosophy, not science. This may be bad news for the high priests of scientism, who reject philosophy, but there is no escaping it.

(….) There is a general agreement that science concentrates on aspects of the world that can be studied through theories that can be tested by doing experiments. Those aspects relate to spatiotemporal patterns in nature, for this is what makes experiments possible. If other dimensions of reality exist, they simply cannot be studied using the methods of the empirical sciences.

(….) Modern science is an enormously wonderful and powerful achievement of our species, a culturally transcendent, universal method for studying the natural world. It should never be used as an ideological weapon. Scientific progress demands a respect for truth, rigor, and objectivity, three ethical values implied in the ethos of science. We can nevertheless draw different conclusions from our analyses of science, but we should always present them carefully, distinguishing what can be said in the name of science from personal interpretations that must be supported by independent reasons, or acknowledged simply as personal opinions. Our analysis shows that the Oracles differ in important points and are not consistently fighting for a common cause. When they go beyond their science, they use different arguments and arrive at different conclusions.

We conclude with one final insight. Science is compatible with a broad cross section of very different views on the deepest human problems. Weinberg, an agnostic Jew from New York, shared his Nobel Prize with Abdus Salam, a devout Muslim from Pakistan. They spoke different languages and had very different views on many important topics. But these differences were of no consequence when they came together to do science. Modern science can be embraced by any religion, any culture, any tribe, and brought to bear on whatever problems are considered most urgent, whether it be tracing their origins, curing their diseases, or cleaning up their water. Science should never be fashioned into a weapon for the promotion of an ideological agenda. Nevertheless, as history has shown, science is all too frequently enlisted in the service of propaganda; and, as we have argued in this book, we must be on guard against intellectual nonsense masquerading as science.

Karl Giberson and Mariano Artigas (2007) in Oracles of Science: Celebrity Scientists versus God and Religion.

Darwinism as an ideology

One of the most interesting developments of the twentieth century has been the growing trend to regard Darwinian theory as transcending the category of provisional scientific theories, and constituting a “world- view.” Darwinism is here regarded as establishing a coherent worldview through its evolutionary narrative, which embraces such issues as the fundamental nature of reality, the physical universe, human origins, human nature, society, psychology, values, and destinies. While being welcomed by some, others have expressed alarm at this apparent failure to distinguish between good, sober, and restrained science on the one hand, and non-empirical metaphysics, fantasy, myth and ideology on the other. In the view of some, this transition has led to Darwinism becoming a religion or atheist faith tradition in its own right.

Denis R. Alexander and Ronald L. Numbers (2010) in Biology and Ideology: From Descartes to Dawkins.

It is difficult to overestimate the importance of Darwinian thinking to American economic reform in the Gilded Age and Progressive Era. Evolutionary thought was American economic reform’s scientific touchstone and a vital source of ideas and conceptual support. The Wharton School’s Simon Nelson Patten, writing in 1894, observed that the century was closing with a bias for biological reasoning and analogy, just as the prior century had closed with a bias for the methods of physics and astronomy. The great scientific victories of the nineteenth century, Patten believed, were “in the field of biology.”

SOMETHING IN DARWIN FOR EVERYONE

To understand the influence of evolutionary thought on American economic reform, we must first appreciate that evolutionary thought in the Gilded Age and Progressive Era in no way dictated a conservative, pessimistic, Social Darwinist politics. On the contrary, evolutionary thought was protean, plural, and contested.

It could license, of course, arguments that explained and justified the economic status quo as survival of the fittest, so-called Social Darwinism. But evolutionary thought was no less useful to economic reformers, who found in it justification for optimism rather than pessimism, for intervention rather than fatalism, for vigorous rather than weak government, and for progress rather than drift. Evolution, as Irving Fisher insisted in National Vitality, did not teach a “fatalistic creed.” Evolution, rather, awakened the world to “the fact of its own improvability.”

In the thirty years bracketing 1900, there seems to have been something in Darwin for everyone. Karl Pearson, English eugenicist and founding father of modern statistical theory, found a case for socialism in Darwin, as did the co-discoverer of the theory of evolution by natural selection, Alfred Russel Wallace. Herbert Spencer, in contrast, famously used natural selection, which he called “survival of the fittest,” to defend limited government.

Warmongers borrowed the notion of survival of the fittest to justify imperial conquest, as when Josiah Strong asserted that the Anglo-Saxon race was “divinely commissioned” to conquer the backward races abroad. Opponents of war also found sustenance in evolutionary thought. Pyotr Kropotkin argued that the struggle for existence need not involve conflict, much less violence. Cooperation could well be the fittest strategy. David Starr Jordan, president of Stanford from 1891 to 1913 and a leader of the American Peace Movement during World War I, opposed war because it selected for the unfit. The fittest men died in battle, while the weaklings stayed home to reproduce.

Darwin seems to have been pro-natalist, on the grounds that more births increased the variation available for natural selection. Margaret Sanger argued that restricting births was the best way to select the fittest. Darwin’s self-appointed “bulldog,” T. H. Huxley, thought natural selection justified agnosticism, whereas devout American interpreters, such as botanist Asa Gray, found room in Darwinism for a deity.

It is a tribute to the influence of Darwinism that Darwin inspired exegetes of nearly every ideology: capitalist and socialist, individualist and collectivist, pacifist and militarist, pro-natalist and birth-controlling, as well as agnostic and devout.

Darwinism was itself plural, and Progressive Era evolutionary thought was more plural still. The ideas of other prominent evolutionists (notably, Herbert Spencer and Alfred Russel Wallace) were also influential in the Progressive Era, both when they accorded with Darwin and when they didn’t.

— Thomas C. Leonard (2016) in Illiberal Reformers: Race, Eugenics, and American Economics in the Progressive Era.

[L]iberal theology reconceptualizes the meaning of Christianity in the light of modern knowledge and ethical values. It is reformist in spirit and substance, not revolutionary. Specifically it is defined by its openness to the verdicts of modern intellectual inquiry, especially historical criticism and the natural sciences; its commitment to the authority of individual reason and experience; its conception of Christianity as an ethical way of life; its advocacy of moral concepts of atonement or reconciliation; and its commitments to make Christianity credible and socially relevant to contemporary people. In the nineteenth century, liberal theologians denied that God created the world in six days, commanded the genocidal extermination of Israel’s ancient enemies, demanded the literal sacrifice of his Son as a substitutionary legal payment for sin [see Laughing Buddha], and verbally inspired the Bible. Most importantly, they denied that religious arguments should be settled by appeals to an infallible text or ecclesial authority. Putting it positively, nineteenth-century liberals accepted Darwinian evolution, biblical criticism, a moral influence view of the cross, an idea of God as the personal and eternal Spirit of love, and a view of Scripture as authoritative only within Christian experience. Nineteenth- teenth- and early-twentieth-century liberals expected these views to prevail in Christianity as a whole, but in the twenty-first century they remain contested beliefs.

Gary Dorrien. The Making of American Liberal Theology: Crisis, Irony, and Postmodernity: 1950-2005 (Kindle Locations 155-157). Kindle Edition.

Unless the moral insight and the spiritual attainment of mankind are proportionately augmented, the unlimited advancement of a purely materialistic culture may eventually become a menace to civilization. A purely materialistic science harbors within itself the potential seed of the destruction of all scientific striving, for this very attitude presages the ultimate collapse of a civilization which has abandoned its sense of moral values and has repudiated its spiritual goal of attainment.

The materialistic scientist and the extreme idealist are destined always to be at loggerheads. This is not true of those scientists and idealists who are in possession of a common standard of high moral values and spiritual test levels. In every age scientists and religionists must recognize that they are on trial before the bar of human need. They must eschew all warfare between themselves while they strive valiantly to justify their continued survival by enhanced devotion to the service of human progress. If the so-called science or religion of any age is false, then must it either purify its activities or pass away before the emergence of a material science or spiritual religion of a truer and more worthy order.

What both developing science and religion need is more searching and fearless self-criticism, a greater awareness of incompleteness in evolutionary status. The teachers of both science and religion are often altogether too self-confident and dogmatic. Science and religion can only be self-critical of their facts. The moment departure is made from the stage of facts, reason abdicates or else rapidly degenerates into a consort of false logic.

~ ~ ~

By the mid-nineteenth century, there were really only three ways in which natural theologians could deal with the growing evidence that the earth was very old, that it was recycling inexorably beneath their feet, and that life on earth had constantly changed over millions of years. They could ignore it, they could accommodate it to the biblical accounts of history by more or less denying the literal truth of Genesis, or they could explain it all away. The later natural theologians largely ignored it. The sacred theorists tried unsuccessfully to reconcile geology with the Bible. And one man above all others tried to explain it away. He was Philip Henry Gosse (1810-1888), a writer on natural history whose books caught the imagination of generations of Victorians and whose life became a tortured tale of religion contesting with science…. (Thomson 2007: 223)

Gosse’s dilemma was that of all natural theologians, especially after the publication in 1844 of an anonymously authored, thrillingly dangerous, and wildly successful book on evolution…. The book’s title, with an allusion to James Hutton that nobody could miss, was Vestiges of Creation. Chambers’ theory was largely derived from Lamarck’s which, like Erasmus Darwin’s, depended upon organisms being subject to change as a direct result of environmental pressures and exigencies [which today is know to be possible via epigentics]. Chambers probably set Charles Darwin back fifteen years — much to the benefit of all. In many ways he blazed the trail that Darwin could more cautiously follow with an even more convincing theory in hand. Darwin must have realized, with the example of Chambers in front of him (and approval of the political left and censure from both the religious and scientific right) that he would have to ensure his theory would have a better reception. (Thomson 2007: 224)

Gosse knew that various versions of what we now call evolution had been around for more than a hundred years. By the mid-1850s, most scientists in Britain knew which way the wind was blowing. Darwin had been hard at work in private since 1842, preparing the ground for his idea of natural selection, and knowing how popular a scientist Gosse was, he tried to enlist him to support his theory. Darwin’s self-designated ‘bull dogs’, including Thomas Huxley, were steadily persuading the sceptics Huxley had been lecturing formally on an evolutionary relationship between men and apes as early as 1858. This growing movement evolutionary movement offered a new way of explaining the evidence of organic changes, but only at the expense of much accepted religious belief. It threatened to change radically the whole frame of intellectual reference and to produce a new explanation of cause. For a huge number of theologians, clerics, philosophers and ordinary people, evolution was changing the metaphysical balance of power. Among those who felt this most keenly was Gosse. (Thomson 2007: 224)

One’s heart has to ache for Gosse, one of the most sympathetic characters of the evolutionary saga, a man weighed down by the burdens of fundamentalist Christianity and at the same time a brilliant naturalist…. He was the first to introduce to a popular audience the life of the seashore, the fragile world of exquisite beauty and strength that lies just a few inches beneath the surface of the sea and in the rocky pools of the coast. Before Gosse, all this was largely unseen. Gosse single-handedly created marine biology and home aquaria, and became one of the great chroniclers of the intricate worlds revealed by the microscope. (Thomson 2007: 225)

(….) Once Lamarck and Chambers had made it possible (even necessary) to take evolution seriously, and after his meeting with Charles Darwin had shown how powerful was the extent of the challenge to his fundamentalist beliefs, Gosse felt called to respond; as a Plymouth Brother and as a scientist, it was his responsibility, just as it had been Paley’s and before Paley John Ray’s or Thomas Burnet’s. Gosse’s dilemma was to try to find a way to reconcile his science and his faith. He chose to challenge the rapidly growing support for evolutionists from the geological record. (Thomson 2007: 226)

(….) Huxley had a favourite lecture a “Lay Sermon’ entitled Essay on a Piece of Chalk. He would stand before an eager crowd and take a piece of common chalk from his pocket, asking the audience what it could possibly tell them about the history of the cosmos and of life on earth. The answer is that chalk (in those days, before blackboard chalk was an artificial, hypo-allergenic substance) represents the accumulation on an ancient sea bottom of the skeletons of countless billions of microscopic planktonic organisms that once inhabited vast tropical oceans that extended across the earth, from Europe and the Middle East to Australia and North America. (Thomson 2007: 227)

(….) Philip Gosse knew only too well what a piece of chalk looked like under a microscope and that the earth’s crust consisted of thousands of feet of different rocks, some bearing fossils, others the remains of ancient lava flows, dust storms, water-borne sediments, and even ancient coral reefs just like those he had seen in Jamaica…. How could Gosse explain away this all-too-solid evidence of the ancient history of the earth and its denizens? What did it have to say about the biblical account of creation in six days? (Thomson 2007: 228)

(….) Gosse’s answer cost him dearly. The dilemma figuratively tore him scientist and fundamentalist Christian in half. In a classic example of ad hoc reasoning, he explained away all this appearance of change in a book entitled Omphalos, the Greek for ‘navel’, and in that one word is contained the core of Gosse’s argument. It is the old conundrum: did Adam have a navel? If God created Adam as the first man out of nothing, Adam would have no need for a navel, since he had never been connected by an umbilical cord to a mother. Nor indeed had Eve, of whose origin Genesis gives two accounts. Nor indeed (remembering that the Bible tells us that God made man in his own image) would God physiologically have needed navel. (Thomson 2007: 229)

Gosse simply asserted that at the moment of creation, just as God made Adam with a navel, he also made the earth with all its complex layers, its faults, every one of its fossils, volcanoes in mid-eruption and rivers in full spate carrying a load of sediment that had never been eroded from mountains that had never been uplifted. Similarly, at that instant, every tree that had never grown nevertheless had internal growth rings; every mammal already had partially worn teeth. He created rotting logs on the forest floor, the rain in mid-fall, the light from distant stars in mid-stream, the planets part-way around their orbits … the whole universe up and running at the moment of creation no further assembly required. (Thomson 2007: 229)

Such an argument, of course, can never be beaten. It says that God has created all the evidence that supports his existence and (shades of Hume) all the evidence that appears to cast doubt on it. Equally, of course, a theory that explains everything explains nothing. Omphalos is untestable and therefore one cannot concur rationally with its argument; you must simply close your eyes and believe. Or smile. (Thomson 2007: 229-230)

Over the years, Gosse’s argument has been bowdlerised to the slightly unworthy proposition that God set out the geological record, with all its evidence of change, in order to test man’s faith. It was, therefore, the ultimate celestial jest and cruel hoax. This was about as far from Gosse’s pious intention as Darwin’s impious theory. As for what Paley would have made of Omphalos I like to think he would have rejected it, but kindly, for he was a kind man. Victorian England not only rejected it, they laughed at it cruelly. Gosse became overnight a broken man, his reputation as a scientist in shatters. (Thomson 2007: 230)

But nothing is as simple as it ought to be. A community that mocked Omphalos and had no problem in coming to terms with the even more difficult issue of cosmology, still could not come to terms with geology. In fact, whether in Paley’s time or in Darwin’s, or indeed our own, one of the oddities in the history of interplay between science and religion is that cosmology never seems to have become as serious a threat to revealed religion as natural science. When pressed, people often revert to believing two things at once. The evidence that the universe is huge and ancient can be assimilated seemingly without shaking the conviction that the earth itself is 6,000 years old and that all living creatures were created over a two-day period. For example: ‘The school books of the present day, while they teach the child that the earth moves, yet assure him that that it is a little less than six thousand years old, and that it was made in six days. On the other hand, geologists of all religious creeds are agreed that the earth has existed for an immense series of years.’ These last words were written in 1860 and appear in a work that arguably presented a greater threat to the Established Church than the evolutionism of Erasmus Darwin, Lamarck, Robert Chambers or even Charles Darwin. Essays and Reviews was an example of the enemy within, a compilation of extremely liberal theological views by noted churchman and academics. Among their targets was the unnecessary and outmoded belief in miracles and the biblical account of the days of creation. The battle is still being fought. (Thomson 2007: 230-231)

Imaginary Empty Balls

The answer, therefore, which the seventeenth century gave to the ancient question … “What is the world made of?” was that the world is a succession of instantaneous configurations of matter — or material, if you wish to include stuff more subtle than ordinary matter…. Thus the configurations determined there own changes, so that the circle of scientific thought was completely closed. This is the famous mechanistic theory of nature, which has reigned supreme ever since the seventeenth century. It is the orthodox creed of physical science…. There is an error; but it is merely the accidental error of mistaking the abstract for the concrete. It is an example of what I will call the ‘Fallacy of Misplaced Concreteness.’ This fallacy is the occasion of great confusion in philosophy. (Whitehead 1967: 50-51)

(….) This conception of the universe is surely framed in terms of high abstractions, and the paradox only arises because we have mistaken our abstractions for concrete realities…. The seventeenth century had finally produced a scheme of scientific thought framed by mathematics, for the use of mathematics. The great characteristic of the mathematical mind is its capacity for dealing with abstractions; and for eliciting from them clear-cut demonstrative trains of reasoning, entirely satisfactory so long as it is those abstractions which you want to think about. The enormous success of the scientific abstractions, yielding on the one hand matter with its simple location in space and time, on the other hand mind, perceiving, suffering, reasoning, but not interfering, has foisted onto philosophy the task of accepting them as the most concrete rendering of fact. (Whitehead 1967: 54-55)

Thereby, modern philosophy has been ruined. It has oscillated in a complex manner between three extremes. These are the dualists, who accept matter and mind as on an equal basis, and the two varieties of monists, those who put mind inside matter, and those who put matter inside mind. But this juggling with abstractions can never overcome the inherent confusion introduced by the ascription of misplaced concreteness to the scientific scheme of the seventeenth century. (Whitehead 1967: 55)

Alfred North Whitehead in Science and the Modern World

In the UK, for example, 97 percent of money is created by commercial banks and its character takes the form of debt-based, interest-bearing loans. As for its intended use? In the 10 years running up to the 2008 financial crash, over 75 percent of those loans were granted for buying stocks or houses—so fuelling the house-price bubble—while a mere 13 percent went to small businesses engaged in productive enterprise.47 When such debt increases, a growing share of a nation’s income is siphoned off as payments to those with interest-earning investments and as profit for the banking sector, leaving less income available for spending on products and services made by people working in the productive economy. ‘Just as landlords were the archetypal rentiers of their agricultural societies,’ writes economist Michael Hudson, ‘so investors, financiers and bankers are in the largest rentier sector of today’s financialized economies.’ (Raworth 2017, 155)

Once the current design of money is spelled out this way—its creation, its character and its use—it becomes clear that there are many options for redesigning it, involving the state and the commons along with the market. What’s more, many different kinds of money can coexist, with the potential to turn a monetary monoculture into a financial ecosystem. (Raworth 2017, 155)

Imagine, for starters, if central banks were to take back the power to create money and then issue it to commercial banks, while simultaneously requiring them to hold 100 percent reserves for the loans that they make—meaning that every loan would be backed by someone else’s savings, or the bank’s own capital. It would certainly separate the role of providing money from the role of providing credit, so helping to prevent the build-up of debt-fuelled credit bubbles that burst with such deep social costs. That idea may sound outlandish, but it is neither a new nor a fringe suggestion. First proposed during the 1930s Great Depression by influential economists of the day such as Irving Fisher and Milton Friedman, it gained renewed support after the 2008 crash, gaining the backing of mainstream financial experts at the International Monetary Fund and Martin Wolf of the UK’s Financial Times. (Raworth 2017, 155-156)

Kate Raworth in Doughnut Economics

~ ~ ~

The dematerialization of the value concept boded ill for the tangible world of stable time and concrete motion (Kern 1983). Again, the writer Jorge Luis Borges (1962, p. 159) captured the mood of the metaphor: (Mirowski 1989, 134. Kindle Location 2875-2877)

I reflected there is nothing less material than money, since any coin whatsoever (let us say a coin worth twenty centavos) is, strictly speaking, a repertory of possible futures. Money is abstract, I repeated; money is the future tense. It can be an evening in the suburbs, or music by Brahms; it can be maps, or chess, or coffee; it can be the words of Epictetus teaching us to despise gold; it is a Proteus more versatile than the one on the isle of Pharos. It is unforeseeable time, Bergsonian time . . . (Mirowski 1989, 134-135. Kindle Location 2877-2881)

It was not solely in art that the reconceptualization of value gripped the imagination. Because the energy concept depended upon the value metaphor in part for its credibility, physics was prodded to reinterpret the meaning of its conservation principles. In an earlier, simpler era Clerk Maxwell could say that conservation principles gave the physical molecules “the stamp of the manufactured article” (Barrow and Tipler 1986, p. 88), but as manufacture gave way to finance, seeing conservation principles in nature gave way to seeing them more as contingencies, imposed by our accountants in order to keep confusion at bay. Nowhere is this more evident than in the popular writings of the physicist Arthur Eddington, the Stephen Jay Gould of early twentieth century physics: (Mirowski 1989, 135. Kindle Location 2881-2887)

The famous laws of conservation and energy . . . are mathematical identities. Violation of them is unthinkable. Perhaps I can best indicate their nature by an analogy. An aged college Bursar once dwelt secluded in his rooms devoting himself entirely to accounts. He realised the intellectual and other activities of the college only as they presented themselves in the bills. He vaguely conjectured an objective reality at the back of it all some sort of parallel to the real college though he could only picture it in terms of the pounds, shillings and pence which made up what he would call “the commonsense college of everyday experience.” The method of account-keeping had become inveterate habit handed down from generations of hermit-like bursars; he accepted the form of the accounts as being part of the nature of things. But he was of a scientific turn and he wanted to learn more about the college. One day in looking over the books he discovered a remarkable law. For every item on the credit side an equal item appeared somewhere else on the debit side. “Ha!” said the Bursar, “I have discovered one of the great laws controlling the college. It is a perfect and exact law of the real world. Credit must be called plus and debit minus; and so we have the law of conservation of £. s. d. This is the true way to find out things, and there is no limit to what may ultimately be discovered by this scientific method . . .” (Mirowski 1989, 135. Kindle Location 2887-2898)

I have no quarrel with the Bursar for believing that scientific investigation of the accounts is a road to exact (though necessarily partial) knowledge of the reality behind them . . . But I would point out to him that a discovery of the overlapping of the different aspects in which the realities of the college present themselves in the world of accounts, is not a discovery of the laws controlling the college; that he has not even begun to find the controlling laws. The college may totter but the Bursar’s accounts still balance . . . (Mirowski 1989, 135-136. Kindle Location 2898-2902)

Perhaps a better way of expressing this selective influence of the mind on the laws of Nature is to say that values are created by the mind [Eddington 1930, pp. 237–8, 243]. (Mirowski 1989, 136. Kindle Location 2903-2904)

Once physicists had become inured to entertaining the idea that value is not natural, then it was a foregone conclusion that the stable Laplacean dreamworld of a fixed and conserved energy and a single super-variational principle was doomed. Again, Eddington stated it better than I could hope to: (Mirowski 1989, 136. Kindle Location 2904-2907)

[Classical determinism] was the gold standard in the vaults; [statistical laws were] the paper currency actually used. But everyone still adhered to the traditional view that paper currency needs to be backed by gold. As physics progressed the occasions when the gold was actually produced became career until they ceased altogether. Then it occurred to some of us to question whether there still was a hoard of gold in the vaults or whether its existence was a mythical tradition. The dramatic ending of the story would be that the vaults were opened and found to be empty. The actual ending is not quite so simple. It turns out that the key has been lost, and no one can say for certain whether there is any gold in the vaults or not. But I think it is clear that, with either termination, present-day physics is off the gold standard [Eddington 1935, p. 81]. (Mirowski 1989, 136. Kindle Location 2907-2913)

The denaturalization of value presaged the dissolution of the energy concept into a mere set of accounts, which, like national currencies, were not convertable at any naturally fixed rates of exchange. Quantum mechanical energy was not exactly the same thing as relativistic energy or thermodynamic energy. Yet this did not mean that physics had regressed to a state of fragmented autarkies. Trade was still conducted between nations; mathematical structure could bridge subdisciplines of physics. It was just that everyone was coming to acknowledge that money was provisional, and that symmetries expressed by conservatiori principles were contingent upon the purposes of the theory in which they were embedded. (Mirowski 1989, 136. Kindle Location 2913-2918)

Increasingly, this contingent status was expressed by recourse to economic metaphors. The variability of metrics of space-time in general relativity were compared to the habit of describing inflation in such torturous language as: “The pound is now only worth seven and sixpence” (Eddington 1930, p. 26). The fundamentally stochastic character of the energy quantum was said to allow nuclear particles to “borrow” sufficient energy so that they could “tunnel” their way out of the nucleus. And, inevitably, if we live with a banking system wherein money is created by means of loans granted on the basis of near-zero fractional reserves, then this process of borrowing energy could cascade, building upon itself until the entire universe is conceptualized as a “free lunch.” The nineteenth century would have recoiled in horror from this idea, they who believed that banks merely ratified the underlying real transactions with their loans. (Mirowski 1989, 136-137. Kindle Location 2918-2925)