Category Archives: Bullshit & Philosophy

Literature Only Economics vs. Practical Problem Solving Economics

This was a paper hard to read. It does not mean that the paper was badly written. The difficulty of the task that the author sought enforced him to write this difficult paper. After struggling a week in reading the paper, I am rather sympathetic with Delorme. In a sense, he was unfortunate, because he came to be interested in complexity problems by encountering two problems: (1) road safety problem and (2) the Regime of Interactions between the State and the Economy (RISE). I say “unfortunate,” because these are not good problems with which to start the general discussion on complexity in economics, as I will explain later. Of course, one cannot choose the first problems one encounters and we cannot blame the author on this point, but in my opinion the good starting problems are crucial to further development of the argument of complexity in economics.

Let us take the example of the beginning of modern physics. Do not think of Newton. It is a final accomplishment of the first phase of modern physics. There will be no many people who object that modern physics started by two (almost simultaneous) discoveries: (1) Kepler’s laws of orbital movements and (2) Galileo’s law of falling bodies and others. The case of Galilei can be explained by a gradual rise of the spirit of experiments. Kepler’s case is more interesting. One of crucial data for him was Tycho Brahe’s observations. He improved the accuracy of observation about 1 digit. Before Brahe for more than one thousand years, accuracy of astronomical observations was about 1 tenth of a degree (i.e. 6 minutes in angular unit system). Brahe improved this up to an accuracy of 1/2 minute to 1 minute. With this data, Kepler was confident that 8 minutes of error he detected in Copernican system was clear evidence that refutes Copernican and Ptolemaic systems. Kepler declared that these 8 minutes revolutionize whole astronomy. After many years of trials and errors, he came to discover that Mars follows an elliptic orbit. Newton’s great achievement was only possible because he knew these two results (of Galilei and Kepler). For example, Newton’s law of gravitation was not a simple result of induction or abduction. The law of square-inverse was a result of halflogical deduction from Kepler’s third law.

I cite this example, because this explains in which conditions a science can emerge. In the same vein, the economics of complexity (or more correctly economics) can be a good science when we find this good starting point. (Science should not be interpreted in a conventional meaning. I mean by science as a generic term for a good framework and system of knowledge). For example, imagine that solar system was composed of two binary stars and earth is orbiting with a substantial relative weight. It is easy to see that this system has to be solved as three-body problem and it would be very difficult for a Kepler to find any law of orbital movement. Then the history of modern physics would have been very different. This simple example shows us that any science is conditioned by complexity problems, or by tractable and intractable problem of the subject matter or objects we want to study.

The lesson we should draw form the history of modern physics is a science is most likely to start from more tractable problems and evolve to a state that can incorporate more complex and intractable phenomena. I am afraid that Delorme is forgetting this precious lesson. Isn’t he imagining that an economic science (and social science in general) can be well constructed if we gain a good philosophy and methodology of complex phenomena?

I do not object that many (or most) of economic phenomena are deeply complex ones. What I propose as a different approach is to climb the complexity hill by taking a more easy route or track than to attack directly the summit of complexity. Finding this track should be the main part of research program but I could not find any such arguments in Delorme’s paper. (Yoshinori Shiozawa, A Cognitive Behavioral Modelling for Coping with Intractable Complex Phenomena in Economics and Social Science. In Economic Philosophy: Complexity in Economics (WEA Conference), 10/10/2017.)

1) My paper can be viewed as an exercise in problem solving in a context of empirical intractability in social science. It was triggered by the empirical discovery of complex phenomena raising questions that are not amenable to available tools of analysis, i.e., are intractable. Then the problem is to devise a model and tools of analysis enabling to cope with these questions. Then, unless someone comes with a complex system analysis or whatever tool that solves the problem at stake, a thing I would welcome, I can’t think of any other way to proceed than focusing on the very cognitive process of knowledge creation and portraying it as a reflective, open-ended, problem-first cognitive behavioral endeavour. It is an approach giving primacy both to looking and discovering rather than to assuming and deducing, and to complexity addressed in its own right rather than to complex systems in which complexity is often viewed tautologically as the behavior of complex systems. The outcome is a new tool of analysis named Deep Complexity in short. I believe that the availability of this tool provides a means to take more seriously the limitations of knowledge in a discipline like economics in which inconclusive and non demonstrative developments are not scarce when sizeable issues are involved.

2) Yoshinori Shiozawa raises the question of where to start from, from tractable problems or from the intractable? He advocates the former and suggests to “evolve to a state that can incorporate more complex and intractable phenomena”. But then, with what tools of analysis for intractable phenomena? And I would have never addressed intractability if I had not bumped into unresolved empirical obtacles. Non commutative complementarity is at work here: starting with the tractable in a discipline dominated by non conclusive and non demonstrative debates doesn’t create any incentive to explore thoroughly the intractable. It is even quite intimidating for those who engage in it. This sociology of the profession excludes de facto intractability from legitimate investigation. Then starting from the possibility of intractability incorporates establishing a dividing line and entails a procedural theorizing in which classical analysis can be developed for tractable problems when they are identified, otherwise the deep complexity tool is appropriate, before a substantive theorizing can be initiated. It is a counterintuitive process: complexification comes first, before a further necessary simplification or reduction. (Robert Delorme, (WEA Conference), 11/30/2017.)

In my first comment in this paper, I have promised to argue the track I propose. I could not satisfy my promise. Please read my second post for the general comments in discussion forum. I have given a short description on the working of an economy that can be as big as world economy. It explains how an economy works. The working of economy (not economics) is simple but general equilibrium theory disfigured it. The track I propose for economics is to start form these simple observations

As I have wrote in my first post, modern science started from Galileo Galilei’s physics and Johaness Kepler’s astronomy. We should not imagine that we can solve a really difficult problem (Delorme’s deep complexity) in a simple way. It is not a wise way to try to attack deep complexity unless we have succeeded to develop a sufficient apparatus by which to treat it. (Yoshinori Shiozawa, A Cognitive Behavioral Modelling for Coping with Intractable Complex Phenomena in Economics and Social Science. In Economic Philosophy: Complexity in Economics (WEA Conference), 11/30/2017.)

Dear Dr Shiozawa, it seems that we are not addressing the same objects of inquiry. Yours seems to stand at an abstract level of modern science in general. Mine is much less ambitious: it is grounded in research on how to deal with particular, empirically experienced problems in real economic and social life, that appear intractable, and subject to scientific practice. Deep Complexity is the tool that is manufactured to address this particular problem. It may have wider implications in social science. but that is another story. (Robert Delorme, A Cognitive Behavioral Modelling for Coping with Intractable Complex Phenomena in Economics and Social Science. In Economic Philosophy: Complexity in Economics (WEA Conference), 11/30/2017.)

You are attacking concrete social problems. I am rather a general theorist. That may be the reason of our differences of stance toward your problem.

Our situation reminds me the history of medicine. This is one of the oldest science and yet as the organism is highly complex system, many therapies remained symptomatic. Even though, they were to some extent useful and practical. I do not deny this fact. However, modern medicine is now changing its features, because biophysical theories and discoveries are changing medical research. Researchers are investigating the molecular level mechanism why a disease emerges. Using this knowledge, they can now design drugs at the molecular level. Without having a real science, this is not possible.

[Note Shiozawa’s implicit claim that previous medical science was not real science, but became real with the advent of molecular biology. No doubt molecular biology has opened up new domains of knowledge, but of course it is simply ludicrous to claim medicine wasn’t real science prior to molecular biology, as many perfectly valid scientific discoveries prior to and/or discovered without molecular biology are available to prove this assertion simply false. As Delorme states plainly below, this is scientism, not to mention an abysmal attempt to use revisionist history for purely rhetorical purposes. For more examples of Shiozawa’s scientism and sophistry see Semantic Negligence and for a description of literature-only economics see Payson 2017. For a good description of the kind of scientism Shiozawa is parroting see Pilkington 2016. To use one of Shiozawa’s favorite authors for go-to appeals to authority (unfortunately his memory doesn’t serve him well as Andreski contradicts his claim on RWER), see Stanislav Andreski’s Social Sciences as Sorcery (1973, 22-23).]

Economics is still in the age of pre-Copernican stage. It would be hard to find a truth mechanism why one of your examples occurs. I understand your intention, if you want say by the word of “deep complexity” a set of problems that are still beyond our ability of cognition or analysis. We may take a method very different from the regular science and probably similar to symptomatology and diagnostics. If you have argue in this way, it would have made a great contribution to our forum on complexities in economics. This is what I wanted to argue as the third aspect of complexity, i.e. complexity that conditions the development of economics as science.

To accumulate symptomatic and diagnostic knowledge in economics is quite important but most neglected part of the present day economics. (Yoshinori Shiozawa, A Cognitive Behavioral Modelling for Coping with Intractable Complex Phenomena in Economics and Social Science. In Economic Philosophy: Complexity in Economics (WEA Conference), 12/1/2017, italics added.)

It is interesting to learn that, as an economist and social scientist, I must be in a “pre-Copernican” stage. Although what this means is not totally clear to me, I take it as revealing that our presuppositions about scientific practice differ. You claim to know what is the most appropriate way of investigating the subject I address, and that this way is the methods and tools of natural science. I claim to have devised a way which works, without knowing if it is the most appropriate, a thing whose decidability would seem to be quite problematic. And the way I have devised meets the conditions of a reflective epistemology of scientific practice, in natural science as well as in social science. Your presupposition is that the application of the methods of natural science is the yardstick for social science. This is scientism.

My presupposition is that there may be a difference between them, and that one cannot think of an appropriate method in social science without having first investigated and formulated the problem that is presented by the subject. As a “general theorist”, your position is enjoyable. May I recall what Keynes told Harrod: “Do not be reluctant to soil your hands”. I am ready to welcome any effective alternative provided it works on the object of inquiry that is at stake. It is sad that you don’t bring such an alternative. As Herb Simon wrote, ”You can’t beat something with nothing”. I borrow from your own sentence that “if you had argued this way, it would have made a great contribution to our forum…” (Robert Delorme, A Cognitive Behavioral Modelling for Coping with Intractable Complex Phenomena in Economics and Social Science. In Economic Philosophy: Complexity in Economics (WEA Conference), 12/1/2017, italics added.)

Semantic Negligence (揚げ足)

What is at the stake is the whole structure of a discipline. Can you imagine such a thing in geology or geophysics? It is something similar to replacing modern physics by another. Probably you cannot understand the real issue of economics.

Yoshinori Shiozawa, 2/5/2018, Personal Communication

Arguments do not always wear their true purpose on their face, nor are [we] required to take them at face value.

Martha Nussbaum (2008, 343-344) in Liberty of Conscience

Logic is a subtle science. It was discovered in Classical Greece, but it was not formalized in any other areas in the classical age. Mathematics began also in Classical Greece and developed in Alexandrian age, but it did not develop as logical science in other areas until the Greek influence arrives. A typical case is East Asia which includes China, Korea and Japan. After the 17th century in Japan, geometry became a kind of intellectual hobby and many posed problems asking others to solve them. We can find very complicated problems which comprise a dozen of circles but the notion of proof did not develop in Edo period (before 1867). (Of course, this is a very rough description.)

[All this history is simply a red herring, a distraction form his real purpose, which he hides.]

In my long life with various people, I came to understand that there are many people who never understand logic. Ernst Haeckel is famous by his recapitulation theory, i.e., “ontogeny recapitulates phylogeny.” But we may not be able to apply his thesis to human thinking. It may not be correct to assume that everybody arrives at the logical stage. Some people may stay at the pre-logical stage even if they become adult. Logic is a subtle science. It was discovered in Classical Greece, but it was not formalized in any other areas in the classical age. Mathematics began also in Classical Greece and developed in Alexandrian age, but it did not developed as logical science in other areas until the Greek influence arrives. A typical case is East Asia which includes China, Korea and Japan. After the 17th century in Japan, geometry became a kind of intellectual hobby and many posed problems asking others to solve them. We can find very complicated problems which comprise a dozen of circles but the notion of proof did not develop in Edo period (before 1867). (Of course, this is a very rough description.)

My personal experience taught me that it is often useless to argue with those people. Logical persuasion never works for them. My first experience was in my college student days. We talked about syllogism. I argued that syllogism is not based on experience and cited this case:

Pig is mortal.
Socrates is a pig.
Therefore, Socrates is mortal.

My colleague never understood that this is a correct syllogism. He insisted that this syllogism is wrong because the small premise is false.

— Shiozowa Yoshinori, Real World Economic Review (RWER), 7/19/2017

Logic can be used to clarify as well as to be obfuscate; to make one’s meaning clear or to hide one’s true meaning; to illuminate truth or hide behind bullshit. Yoshinori’s purpose is to abuse logic to engage in ad hominem, a form of unethical word-play, the sole purpose of which is demean another person via arrogant intellectual intimidation by accusing them of being hopelessly pre-logical. Yoshinori is engaging in “world play” above, using a form of semantic negligence in that he could, if sincere and a descent human being, be explicit in the difference between sound and unsound logical arguments and the difference between valid syllogism, but unsound argument (i.e., the conclusion doesn’t necessarily follow from the false premises), and a valid syllogism with a sound argument (i.e., the conclusions follows necessarily from true premises). An argument that is valid is one where the premises if true necessarily lead to the conclusion. And argument that is sound is one where premises necessarily lead to the conclusion and the premises are actually true. Hence, and argument can be perfectly valid syllogism even with false premises, but an unsound argument in which the conclusion is true not by necessity, but by accident or manipulation meant to obscure truth and/or confuse or demean someone, which seems to be the purpose of Yoshinori’s argument above.

Bullshit is pretension or over-portentousness: discourse which may or may not be superficially complex but which over-intellectualises the straightforward, the obvious, sometimes even the trivial and banal. Bullshit includes evasion, elision, insincerity, procrastination and other forms of dissembling in discourse that fall short of lying, which is very common in, though hardly exclusive to, politics.

Gary Hardcastle, George Reisch. Bullshit and Philosophy: Guaranteed to Get Perfect Results Every Time (Popular Culture and Philosophy Book 24) (p. 199). Open Court. Kindle Edition.

Semantically negligent definitions are parasitical on this process [search for truth or clarity]: they foreclose argument about doubtful identities by disguising them as definitions. Hidden arguments are difficult to criticize—but also easy to ignore. Thus the semantically negligent definer may gain short-term rhetorical advantage by disguising his arguments as definitions, but risks the backfire effect, which is a direct consequence of his neglect of the full meaning of his redefined expression. For a definition to be semantically diligent any concealed arguments must be made explicit to all parties. Moreover, if the proposers hope for their definition to prevail, these arguments must be won.

Gary Hardcastle, George Reisch. Bullshit and Philosophy: Guaranteed to Get Perfect Results Every Time (Popular Culture and Philosophy Book 24) (p. 168). Open Court. Kindle Edition.

Yoshinori Shiozawa confuses sophistry with logic, equating a quest for deeper understanding with the manipulation of words for an untrue purpose merely to win an argument. He wraps insult in pseudo-history to sound erudite, as dishonest intellectuals like to do, but it is really nothing more than debased ad hominem. Shiozawa is playing a dishonest sematic word play game. The same can be said about Shiozawa’s disingenuous, manipulative, and false use of Ernst Haeckel’s biogenetic law, which he cites for rhetorical purposes even though it has long been disproven (Laubichler and Maienschein 2007: 2-3, From Embryology to Evo-Devo. Dibner Institute Studies in the History of Science & Technology Series. MIT Press.). He doesn’t even get his historical and scientific facts correct. This is not science, but scientism.

Yoshinori Shiozawa lacks the wisdom to understand that while logic is valid in the material world and mathematics is reliable when limited in its application to physical things, neither is to be regarded as wholly dependable or infallible when applied to life problems. Life embraces phenomena which are not wholly material.

Arithmetic says that, if one man could shear a sheep in ten minutes, ten men could shear it in one minute. That is sound mathematics, but it is not true, for the ten men could not so do it; they would get in one another’s way so badly that the work would be greatly delayed. Mathematics asserts that, if one person stands for a certain unit of intellectual and moral value, ten persons would stand for ten times this value. But in dealing with human personality it would be nearer the truth to say that such a personality association is a sum equal to the square of the number of personalities concerned in the equation rather than the simple arithmetical sum. A social group of human beings in coordinated working harmony stands for a force far greater than the simple sum of its parts. Quantity may be identified as a fact, thus becoming a scientific uniformity. Quality, being a matter of mind interpretation, represents an estimate of values, and must, therefore, remain an experience of the individual. When science, philosophy, and religion become less dogmatic and more tolerant of criticism, philosophy will then begin to achieve unity in the intelligent comprehension of the universe.

Yoshinori Shiozawa is afflicted with mathematical pride and statistical egotism, not to mention spiritual blindness. He engages in ” trivial, and pointless forms of mathematization” (Roi 2017, 4) while pushing a utterly useless literature-only (Payson 2017) style of so-called “economics” on daily basis on Real World Economics Review blog. He is more like a used car salesman, hawking his lemonshis pseudo-scientific literature-only papers and bookspronouncing ex cathedra a New Central Dogma (which I’ll deal with more fully in another post).

Whiggish History qua Scientism

You have gotten a good number of ardent supporters, but many of them are feeble minded people who believe that they can change economics if they denounce mathematics and natural sciences. They are simple minded anti-scientists.

Yoshinori Shiozawa, RWER: Lars Syll, New Classical macroeconomists — people having their heads fuddled with nonsense, 2/13/2018

This is not the first time Shiozawa has engaged in such sophistry and sematic negligence, as his performance on the WEA Conference forum reveals:

It is interesting to learn that, as an economist and social scientist, I must be in a “pre-Copernican” stage. Although what this means is not totally clear to me, I take it as revealing that our presuppositions about scientific practice differ. You claim to know what is the most appropriate way of investigating the subject I address, and that this way is the methods and tools of natural science. I claim to have devised a way which works, without knowing if it is the most appropriate, a thing whose decidability would seem to be quite problematic. And the way I have devised meets the conditions of a reflective epistemology of scientific practice, in natural science as well as in social science.

Your presupposition is that the application of the methods of natural science is the yardstick for social science. This is scientism.

Robert Delorme, A Cognitive Behavioral Modelling for Coping with Intractable Complex Phenomena in Economics and Social Science. In Economic Philosophy: Complexity in Economics (WEA Conference), 12/1/2017, italics added.

Yoshinori Shiozawa likes to engage in nasty ad hominem accusing others of being feeble minded while arrogantly pontificating a whig interpretation of the history of science (e.g., see Brush). Nussbaum correctly points out that we are not required to take such arguments on their face value, and neither should reasonable people take such disingenuous, ahistorical arguments seriously, let alone at face value.

Shiozawa’s ahistorical whig interpretation of history can be clearly seen in an exchange on RWER (it is assumed the exchange was deleted because of Shiozawa’s nasty ad hominem):

Do you [i.e., Ken Zimmerman] know that you are proving by yourself that your range of imagination is heavily biased…. If history of science (not the sociology of science; they are very different disciplines) focuses exclusively on the factors “from scientific training, to professionalism, to informal education, to friendships, to hunches, etc.”, you are excluding the most important entity or driver in a history of science.  A science is a system of theories (including and concerning concepts, observations, measurement, experiences, data, etc.) that seeks coherence. The internal logic of the system is much more important than all other social factors in which you are interested. The latter are by-players and cannot and should not be a main player. Your history of science is really the tragedy (or rather comedy?) without the prince of Denmark…. [Y]ou are repeating this kind of misplaced arguments. You pretend to have studied history of sciences (it may be true), but you have studied it through the looking glass of sociology of science. In the history of science there are specialists who are called externalists. They often give a new fresh air to the history of science. So I do not deny that they have some roles in the history of science(s). In the history of economic thought there are also externalists. Philip Mirowski is an example. On the opposite extreme of externalists, we have internalists. My paper on An Origin of the Neoclassical Economics is written from the internalist point of view. In this case, I questioned why John Stuart Mill was guided by an internal logic of the problem he wanted to solve (probably despite of his wish) to open a way to the neoclassical economics. If sociology of science can be included among the history of science(s), it belongs to the strand of externalists. It cannot be the core of history of science(s), because it lacks understanding of the main motive of scientific development.

Yoshinori Shiozawa, RWER: Asad Zaman’s Radical paradigm shifts, 7/17/2017

Your views on the history and sociology of science are dated. In 1970, they would have been appropriate. But not today. Formally speaking the two are separate. Separate department offices, chair persons, class schedules. But in theory and practice the two work together closely today. You seem to believe that sciences are magical. That “systems of theories” can somehow take science and scientists out of human ways of life, human culture, and human societies. That’s not possible. So, the same factors that enter these enter science as well. To use the phrase favored by many sociologists of science, science is “constructed in interactions of humans with one another and with the non-human.” That includes the systems of theories you mention, as well as the methods, tools (language, including mathematics, cultural standards, etc.) that are the basis of scientific work. It also includes every variation of logic and formal analytic philosophy, from which notions of coherence and sense-making in science emerge. Your statement, “The internal logic of the system is much more important than all other social factors in which you are interested” was rejected nearly 50 years ago by first sociologists and then historians of science. To accept it would mean accepting that science is somehow “supernatural” – beyond the bounds of human experience. Neat analogy with Hamlet. But by making it you undermine your entire argument.

The last major article on the externalism-internalism debate in historiography was in 1992 by Steven Shapin. It’s not so much as the debate was won as that sociologists and historians lost interest in it. It’s not resolvable. But since the 1980s in practice the externalist position dominates most work in the history and sociology of science. So, your paper, if written from the internalist perspective is unusual. For example, the only way we can assume that John Stuart Mill was “guided” by an internal logic is to assume that Mill never participated in human communities, never engaged with his fellow humans, or with the world around him. From going to the Pub, to dating, to attending college, etc. As to the main motive of scientific development, there isn’t one I’m or most historians/sociologists are able to identify. I’ve worked with or observed work by a few hundred physical scientists. Most have multiple reasons for pursuing and building science. Most do not agree on what those motivations are or should be. Not surprising.

Check out: Science in Action (1987), Bruno Latour; Laboratory Life (1979), Steven Woolgar and Bruno Latour.

Ken Zimmerman’s reply to Shiozawa, RWER: Asad Zaman’s Radical paradigm shifts, 7/18/2017

Underlying the externalist-internalist rhetoric is the assumption that there are “factors extrinsic to the putative value-free application of the scientific method,” while “Economic and/or social factors influencing scientific inquiry are externalist.” The idea that there exists a domain of “scientific inquiry … free of values except for the search for truth (Hook, 2002; 3-7)” is a myth of scientism.

In the last quarter of the twentieth century discussions of the interplay of science and society have outgrown the crude dictums of historical materialism, as well as transcending the incoherent dichotomy of internalist and externalist intellectual histories. To cite just a sampling, the writings on the history of science of Brush (1978), Barnes and Shapin (1979), Mackenzie (1981), Freudenthal (1986), Elster (1975), Breger (1982) Sohn-Rethel (1978), Latour (1987), Pickering (1984), Collins (1985), Markus (1987), Forman (1971), and Porter (1981a, 1985, 1986) are evidence of a great flowering of efforts all concerned with a reconsideration of the interplay of science and social forces. [We can add Hook (2002) to this long list.]

— Philip Mirowski (1989, 106-107) More Heat than Light: Economics as Social Physics, Physics as Nature’s Economics

Shiozawa’s use of externalist-internalist rhetoric is dated, anachronistic, ahistorical; he is foolishly blinded by his own hubris. He is espousing scientism, a pseudo-scientific belief about science that is blissfully ignorant of the real nature of science. Shiozawa is espousing a whig interpretation of history:

Sometimes people want to know the presently accepted “right answer” to a question before studying its history…. For the historian of science, this uncertainty about the correct answer does have one important advantage. It undermines the tendency to judge past theories as being right or wrong by modern standards. This tendency is the so-called “Whig interpretation of the history of science” that one usually finds in science textbooks and popular articles. The Whig approach is to start from the present theory, assuming it to be correct, and ask how we got there. For many scientists this is the only reason for studying history at all; Laplace remarked, “When we have at length ascertained the true cause of any phenomenon, it is an object of curiosity to look back, and see how near the hypothesis that have been framed to explain it approach towards the truth” (1966: vol. 4, 1015). Sometimes people want to know the presently accepted “right answer” to a question before studying its history….

But Whiggish history is not very satisfactory if it has to be rewritten every time the “correct answer” changes. Instead, we need to look at the [scientific theories] of earlier centuries in terms of the theories and evidence available at the time. Sometimes people want to know the presently accepted “right answer” to a question before studying its history.

Brush, Stephen G. (1996) Nebulous Earth: The Origin of the Solar System and the Core of the Earth from Laplace to Jeffreys. Vol. 1. Cambridge: Cambridge University Press.

Shiozawa, ignorant of his own pseudo-scientific interpretation of science, no doubt, would accuse Stephen G. Brush of being an externalist, despite the fact of his distinguished career as a scientists prior to turning to history. What does it say when scientists of a far greater caliber than Shiozawa categorically disagree with his whiggish interpretation of history?

A Case of Psychological Projection aka Pre-Logical Argumentum

What is at the stake is the whole structure of a discipline. Can you imagine such a thing in geology or geophysics? It is something similar to replacing modern physics by another. Probably you cannot understand the real issue of economics.

— Yoshinori Shiozawa, 2/5/2018, Personal Communication

This blog is attracting all those who are emotionally frustrated in the actual economy and economics. This is a dangerous symptom.

— Yoshinori Shiozawa, RWER, The Biggest Problem in Science, 7/31/2019

It appears that subtle science of logic escapes Yoshinori in his pre-logical fallacy above. Unfortunately for Yoshinori any clear thinking and reflective person understands perfectly well what Yoshinori is doing above; he is engaging in, to use his own rhetoric, pre-Freudian unconscious psychological projection of his own deepest illogical fears upon others and then couching such projections in pseudo-intellectual sophistry and nonsense (たわごと). Yoshinori is revealing he lacks self-awareness of his own state of mind and behavior, projecting onto others his own confused and flustered state of mind (慌てふためく), his own frustration and worry (はらはらする). Probably he cannot understand the real nature of what he is doing.

On Letting it Slide

The paradox of believing your own bullshit parallels the paradox of self-deception.  If a deceiver by definition knows that the belief he induces is false, it’s hard to see how he can convince himself that the selfsame belief is true (Hardcastle et. al. 2006, 10) ….  In his book Self Deception Unmasked (Princeton: Princeton University Press, 2001), Alfred Mele argues that self deception should not be understood on the model of interpersonal deception. In interpersonal deception, the deceiver does not believe the claim that he hopes his victim will accept as true. If self deception were to fit the interpersonal model, then the self-deceived person would have to play both roles, both affirming and denying the same belief. Mele takes this consequence to show that the interpersonal model fails. For self deception happens quite frequently, and belief in outright logical contradictions rarely seems involved. (Kimbrough, Scott. On Letting It Slide. In Bullshit and Philosophy (editors Hardcastle, Gary L. and Reisch, George A.). Chicago: Open Court; 2006; p. 10.)

Self deceived individuals “mask the evidence” and engage in a “motivated misinterpretation of evidence and selective evidence gathering.” For reasons of courtesy, strategy, and good evidence, we should criticize the product, which is visible, and not the process, which is not. (Frankfurt, p. 336) Warmed over bullshit is not merely a stale imitation of the original, but a fresh deposit that compounds the methodological faults of the original. (Ibid., p. 12-14.)

[B]ullshit results from the adoption of lame methods of justification, whether intentionally, blamelessly or as a result of self-deception. The function of the term is to emphatically express that a given claim lacks any serious justification, whether or not the speaker realizes it. By calling bullshit, we express our disdain for the speaker’s lack of justification, and indignation for any harm we suffer as a result. (Ibid., p. 16.)

[B]ullshit’s indifference to truth and falsity, its hidden interest in manipulating belief and behavior, and the way one senses, as Frankfurt put it in his book [On Bullshit], that the “bullshitter is trying to get away with something.” The audience had come to see Stewart and his writers skewer current political events, after all, so few would have missed the obvious referents—the absence of weapons of mass destruction in Iraq and the admission that sources for these claims were, in retrospect, not credible—that made the book so apropos. (Ibid., pp. viii-ix)

I always love that kind of argument. The contrary of a thing isn’t the contrary; oh, dear me, no! It’s the thing itself, but as it truly is. Ask any die-hard what conservatism is; he’ll tell you that it’s true socialism. And the brewers’ trade papers: they’re full of articles about the beauty of true temperance. Ordinary temperance is just gross refusal to drink; but true temperance, true temperance is something much more refined. True temperance is a bottle of claret with each meal and three double whiskies after dinner.

Aldous Huxley, Eyeless in Gaza (London: Chatto and Windus, 1936) pp. 122–23.

Semantic Negligence

Bullshit is not the only sort of deceptive talk. Spurious definitions, such as those quoted above, are another important variety of bad reasoning. (Ibid., p. 151) …. Whereas the liar represents as true something he believes to be false, the bullshitter represents something as true when he neither knows nor cares whether it is true or false (On Bullshit, p. 55)…. [T]his indifference is much of what we find most objectionable about bullshit. The liar has a vested interest in the institution of truth-telling, albeit a parasitical one: he hopes that his falsehoods will be accepted as true. The bullshitter may also hope to be believed, but he himself is not much bothered whether what he says is true, hence his disregard for the truth is of a deeper and potentially more pernicious character. (Ibid., pp. 151-152)

Our outrage is conditioned on our being the objects of a deception. When we know what the bullshitter is up to we can be much more indulgent. As the comic novelist Terry Pratchett observes of two of his characters, “they believed in bullshit and were the type to admire it when it was delivered with panache. There’s a kind of big, outdoor sort of man who’s got no patience at all with prevaricators and fibbers, but will applaud any man who can tell an outrageous whopper with a gleam in his eye.” The gleam in the eye is essential here: it is this complicity between bullshitter and audience which constitutes the “bull session” (On Bullshit, p. 34). Only when it escapes from the bull session and masquerades as regular assertion is bullshit deceptive; however, the insidious nature of this deception degrades the commitment to truth upon which public discourse depends. (….) [The bullshitter’s] indifference as to the truth value of his statements, that is whether they are true or false, a meaning-related or semantic property, may thus be termed semantic negligence. (Ibid., p. 152)