Category Archives: Economics

Oracles of Science

[S]cientism“—an exaggerated and ideologically explainable respect for a certain mistaken image of science. Indeed, two of the most remarkable figures in thrall to “scientism” were Freud and Marx themselves. Their own theories must be reinterpreted in order to free them from this incubus.

Alexander Rosenberg, Philosophy of Social Science, 2016, p. 156.

[S]cientism is] an exaggerated and often distorted conception of what science can be expected to do or explain for us. One aspect of scientism is the idea that any question that can be answered at all can best be answered by science. This, in turn, is very often combined with a quite narrow conception of what it is for an answer, or a method of investigation, to be scientific. Specifically, it is supposed that canonical science must work by disclosing the physical or chemical mechanisms that generate phenomena. Together these ideas imply a narrow and homogeneous set of answers to the most diverse imaginable set of questions. Everywhere this implies a restriction of the powers of the human mind; but nowhere is this restriction more disastrous than in the mind’s attempts to answer questions about itself.

John Dupré, Human Nature and the Limits of Science, 2002, p. 2.

Science as Pseudo-Religion

Nobel laureate Steven Weinberg, one of the greatest particle physicists of the twentieth century, assured his readers that the universe was “pointless” in his classic The First Three Minutes, still selling briskly a quarter century after its initial publication. We look in vain, says Weinberg, for a purpose for human existence or anything else and must console ourselves selves with the knowledge that science can lift the human experience above its natural level of “farce” and give it the “grace of tragedy.” (Giberson and Artigas 2007, Kindle Locations 40-43)

[Oracles of Science argue] that outside science we cannot find respectable truth; this, of course, is scientism, not science…. Scientism is a belief that serves its adherents very well, assuring them that only science provides vides a valid paradigm for assessing knowledge claims. Scientism is, however, an obviously self-defeating ideology. Its claims about its own epistemology are not the consequence of any scientific investigation but rather reach outside itself into the very realm that it claims does not exist. The claim that there is no valuable knowledge outside science certainly cannot be supported from within science. This is an extremely simple philosophical error, akin to a child claiming that because all the people he knows are in his house, that there cannot be any people outside his house. (Giberson and Artigas 2007, Kindle Locations 565-570)

When we reflect on science—its aims, its values, its limits—we are doing philosophy, not science. This may be bad news for the high priests of scientism, who reject philosophy, but there is no escaping it. Dawkins is a good scientist and a brilliant communicator and certainly would have been an effective lawyer or politician, but he seems strangely unaware that he is an abysmal philosopher and an even worse theologian. (Giberson and Artigas 2007, Kindle Locations 570-573)

How a scientist becomes a disciple of scientism is mysterious, because science and scientism are incompatible. Science owes its success to its restricted focus—its acknowledged inability to even address questions like those raised by scientism, much less answer them. Scientists concentrate on very particular subjects, generally astonishingly narrow, and use rigorous methods to study them, submitting their hypotheses to careful scrutiny and avoiding extrapolations or unwarranted generalizations. In contrast, scientism is an unsupported generalization, bad philosophy masquerading as science or one of its consequents. This qualifies as a virus of the mind, to use Dawkins’s own terminology. Most of scientism’s disciples are casual and probably not even aware that they hold this philosophy, but when scientism is seriously adopted, it becomes a sort of pseudo-religion, providing a meaning to life, and an ideal for which one will fight. Conversion to this strong form of pseudo-religious scientism often derives from two related factors: a disillusionment with some form of traditional religion, and the discovery that science is wonderful and seems to provide meaning and values, in addition to knowledge. (Giberson and Artigas 2007, Kindle Locations 573-579)

There are indeed important values associated with scientific work, and the progress of science contributes to their spread. Progress in crucial aspects of contemporary culture reflects the spread of scientific values. But as most practicing scientists have discovered, one can work in science, easily mixing its values with unrelated extra-scientific interests. (Giberson and Artigas 2007, Kindle Locations 579-580)

Dawkins points, repeatedly and with enthusiasm, to the diversity of religions and concludes that their very diversity proves that no one of them is reliable. Of course, Dawkins’s ideas are themselves much debated among scientists, and serious disputes do indeed exist regarding the very aspects of evolutionary theory that he champions. This, however, hardly constitutes an argument that all these various points of view are equally vacuous and that there can be no serious discussion about them. Dawkins seems strangely unmoved by the large number of thoughtful scholars—including his colleagues leagues at Oxford University, like Keith Ward, Alister McGrath, and Richard Swinburne—whose religious beliefs are accompanied by serious reflection and considerations of evidence. (Giberson and Artigas 2007, Kindle Locations 580-584)

There is, to be sure, a great difference between the general unanimity of science and the diversity of religions. But there is a considered response to this. We reach the peculiar agreement and intersubjectivity of natural science only when we deal with repeatable patterns in the natural world. Scientists have the luxury of gathering together in laboratories to share common, repeatable, and predictable experiences. It is no surprise that when we pose problems related to meaning and spiritual realities, it is more difficult to reach agreement. When we insist on testability, empirical control, quantification, repeatability, and so on, we should be aware that we are confining our study to those realities that meet these criteria. This study is both wonderful and exciting, but it has absolutely nothing to do with the scientism that would impose its straitjacket on the human mind, denying the value or validity of other explorations. (Giberson and Artigas 2007, Kindle Locations 584-589)

~ ~ ~

The Ideological Uses of Evolutionary Biology in Recent Atheistic Apologetics

Why should we be concerned about biology and ideology? One good reason is that the use of biology for non-biological ends has been the cause of immense human suffering. Biology has been used to justify eugenic programs, enforced sterilization, experimentation on living humans, death camps, and political ambitions based on notions of racial superiority, to name but a few examples. We should also be concerned because biological ideas continue to be used, if not in these specific ways, then in other ways that lie well beyond science. Investigating the past should help us to be more reflective about the science of our own day, hopefully more equipped to discern the ideological abuse of science when it occurs. (Alexander and Numbers 2010)

One of the most remarkable developments during the opening years of the twenty-first century has been the appearance of a number of high-profile populist books offering an aggressively atheist critique of religion.’ This “clustering” of prominent works of atheist apologetics in the period 2004-7 is of no small historical interest in its own right, and is widely taken to reflect a cultural reaction against “9/11”-the suicide attacks tacks in New York in September 2001, widely regarded as being motivated by Islamic extremism. (Alexander and Numbers 2010)

Yet the appearance of these works is of interest for another reason. A central theme of two of them is that developments in biology, especially evolutionary biology, have significantly negative implications for belief in God. Daniel Dennett’s Breaking the Spell and Richard Dawkins’ The God Delusion, both published in 2006, express the fundamental belief that the Darwinian theory of evolution has such explanatory power that it erodes many traditional metaphysical notions-such as belief in God-through its “universal acid.” This represents an extension of the basic lines of argument found in earlier works, in which an appeal to biological understandings of human origins, subsequently amplified to include accounts of the origins of human understandings of purpose and value based on evolutionary psychology, which was made in order to erode the plausibility of belief in God. (Alexander and Numbers 2010)

From its first appearance, some saw Darwinism as a potential challenge to at least some aspects of the traditional Christian view of creation. Yet it is important to appreciate that most early evolutionists, including Charles Darwin himself, did not consider that they were thereby promulgating or promoting atheism. Since the beginning of the nineteenth century, serious ous Christian thinkers had come to realize that at least some metaphorical interpretation was demanded in considering the early chapters of Genesis, so that their possible incompatibility with evolution was not the major stumbling block for the intelligentsia that might be expected (see also Harrison, Chapter 1, this volume).’ Nor is there any shortage of later significant evolutionary biologists who held that their science was consistent with their faith, such as Ronald A. Fisher, author of The Genetical Theory of Natural Selection (1930), and Theodosius Dobzhansky, author of Genetics and the Origin of Species (193’7).’ The emphasis upon Darwinism as an acid that totally erodes religious belief, though anticipated in earlier periods, appears to have reached a new intensity in the first decade of the twenty-first century. (Alexander and Numbers 2010)

This chapter sets out to explore the emergence of this focused appeal to evolutionary biology in Dennett’s and Dawkins’ recent works of atheist apologetics, both considering it in its historical context and offering an assessment of its impact on the popular understanding of Darwinism in the early twenty-first century. This appeal to biology in the defense of atheism is complex and nuanced, and there are significant differences of substance and emphasis between atheist writers who adopt such an approach. Nevertheless, some common factors emerge, which suggest that this is an appropriate line of inquiry to pursue, of no small intrinsic intellectual interest to both historians and evolutionary biologists. (Alexander and Numbers 2010, emphasis added)

As my concern in this chapter is specifically with biological issues, I shall not engage with the more general argument, also embedded within some recent atheist writings, that the natural sciences as a whole make faith in God intellectually irresponsible or risible.’ This argument occasionally reflects an implicit presumption, generally not defended by an appeal to historical scholarship, of the permanent validity of a “warfare” or “conflict” model of the historical interaction of science and religion.” It is clear that this model has continuing cultural authority, especially at the popular level. It may have been radically revised, even discredited, by academic historians; it is, however, clear that this development has yet to filter down to popular culture. While this atheist argument merits close attention, as it has relevance for the calibration of traditional Christian approaches to evidence-based apologetics, it is not a topic that I propose to address further here. My main theme is the manner in which Darwinism has been transposed in recent atheist apologetics from a provisional scientific theory to an antitheistic ideology. My focus is on the ideological use of the biological sciences, especially evolutionary biology, in recent atheist apologetics, a topic which I believe is best considered under three broad categories: (1) the elevation of the status of Darwinism from a provisional scientific theory to a worldview; (2) the personal case of Charles Darwin as a role model for scientific atheism; and (3) the use of the concept of the “meme”-a notion that reflects an attempt to extend the Darwinian paradigm from nature to culture-as a means of reductively explaining (and hence criticizing) belief in God. (Alexander and Numbers 2010)

Darwinism as an ideology

One of the most interesting developments of the twentieth century has been the growing trend to regard Darwinian theory as transcending the category of provisional scientific theories, and constituting a “world-view.” Darwinism is here regarded as establishing a coherent worldview through its evolutionary narrative, which embraces such issues as the fundamental nature of reality, the physical universe, human origins, human nature, society, psychology, values, and destinies. While being welcomed by some, others have expressed alarm at this apparent failure to distinguish between good, sober, and restrained science on the one hand, and non-empirical metaphysics, fantasy, myth and ideology on the other. In the view of some, this transition has led to Darwinism becoming a religion or atheist faith tradition in its own right. (Alexander and Numbers 2010)

~ ~ ~

Science as a Social Activity

Most sociologists and anthropologists agree on the definition and the domain of their disciplines; the same holds true for many psychologists, political scientists, and almost all economists. The same cannot be said for philosophers and philosophy. Philosophy is a difficult subject to define, which makes it difficult to show social scientists why they should care about it—the philosophy of social science in particular…. [T]he subject is inescapable for the social scientist…. [W]hether as an economist or an anthropologist, one has to take sides on philosophical questions. One cannot pursue the agenda of research in any of the social sciences without taking sides on philosophical issues, without committing oneself to answers to philosophical questions. (Rosenberg, Alexander. Philosophy of Social Science. Boulder, CO: Westview Press; 2016; p. 1.) 

(…) Questions about what ought to be the case, what we should do, and what is right or wrong, just and unjust, are called normative. By contrast, questions in science are presumably descriptive or, as sometimes said, positive, not normative. Many of the normative questions have close cousins in the social and behavioral sciences Thus, psychology will interest itself in why individuals hold some actions to be right and others wrong; anthropology will consider the sources of differences among cultures about what is good and bad; political science may study the consequences of various policies established in the name of justice; economics will consider how to maximize welfare, subject to the normative assumption that welfare is what we ought to maximize. But the sciences—social or natural—do not challenge or defend the normative views we may hold. In addition to normative questions that the sciences cannot answer, there are questions about the claims of each of the sciences to provide knowledge, or about the limits of scientific knowledge, that the sciences themselves cannot address. These are among the distinctive questions of philosophy of science, including questions about what counts as knowledge, explanation, evidence, or understanding. (Rosenberg 2016, 2-3)

PHILOSOPHICAL PROBLEMS OF SOCIAL SCIENCE

If there are questions the sciences cannot answer and questions about why the sciences cannot answer them, why should a scientist, in particular a behavioral or social scientist, take any interest in them? The positions scientists take on answers to philosophical questions determine questions they consider answerable by science and choose to address, as well as the methods they employ to answer them. Sometimes scientists take sides consciously. More often they take sides on philosophical questions by their very choice of question, and without realizing it. The philosophy of science may be able to vindicate those choices [or undermine them]. At least, it can reveal to scientists that they have made choices, that they have taken sides on philosophical issues. It is crucial for scientists to recognize this, not just because their philosophical positions must be consistent with the theoretical and observational findings of their sciences. Being clear about a discipline’s philosophy is essential at the research frontiers of the disciplines, it is the philosophy of science that guides inquiry…. [T]he unavoidability and importance of philosophical questions are even more significant for the social scientist than for the natural scientist. The natural sciences have a much larger body of well-established, successful answers to questions and well-established methods for answering them. As a result, many of the basic philosophical questions about the limits and the methods of the natural sciences have been set aside in favor of more immediate questions clearly within the limits of each of the natural sciences. (Rosenberg 2016, 3)

The social and behavioral sciences have not been so fortunate. Within these disciplines, there is no consensus on the questions that each of them is to address, or the methods to be employed. This is true between disciplines and even within some of them. Varying schools and groups, movements and camps claim to have developed appropriate methods, identified significant questions, and provided convincing answers to them. But among social scientists, there is certainly nothing like the agreement on such claims that we find in any of the natural sciences. (Rosenberg 2016, 3)

The social and behavioral sciences have not been so fortunate. Within these disciplines, there is no consensus on the questions that each of them is to address, or the methods to be employed. This is true between disciplines and even within some of them. Varying schools and groups, movements and camps claim to have developed appropriate methods, identified significant questions, and provided convincing answers to them. But among social scientists, there is certainly nothing like the agreement on such claims that we find in any of the natural sciences. In the absence of agreement about theories and benchmark methods of inquiry among the social scientists, the only source of guidance for research must come from philosophical theories. Without a well-established theory to guide inquiry, every choice of research question and of method to tackle it is implicitly a gamble with unknown odds. The choice of the social scientist makes it a bet that the question chosen is answerable, that questions not chosen are either less important or unanswerable, that the means used to attack the questions are appropriate, and that other methods are not. (Rosenberg 2016, 4)

~ ~ ~

The reason for the everlasting interaction between science and philosophy transpires clearly. The human mind musters an admirable ability to think up equations for physical systems. But equations need to be interpreted in terms of physical models and mechanisms. Science requires conceptual understanding. This understanding employs fundamental philosophical notions. (….) The scientific enterprise comes with philosophical commitments, whether the scientist likes it or not. The scientist needs philosophical ideas, simply because amongst the experimental and mathematical tools in the toolbox of the scientist there are conceptual tools, like fundamental notions. The despairing scientist may ask: ‘Will we ever get an answer?’ The philosopher replies: ‘Not a definitive answer, but a few tentative answers.’ Recall that the philosopher (and the scientist qua philosopher) works with conceptual models. At any one time only a few of these models are in circulation. They cannot provide the definitive answers of which the scientist is fond. But this is typical of models even in the natural sciences. (Weinert, Friedel. The Scientist as Philosopher: Philosophical Consequences of Great Scientific Discoveries. Berlin: Springer-Verlag; 2004; pp. 278-279. )

~ ~ ~

Science is not above criticism. On the contrary, because of its influence on modern society, science and scientists need careful scrutiny as much as they deserve admiration and support. As Helen Longino eloquently puts it, science is a social process, and one that is far too important to be left in the hands of scientists alone. Perhaps the most dangerous fallacy a scientist can commit, often subconsciously, is to only do science and never think about it. Yet many scientists who I know are not aware of the broad discussion about how science is done (or shouldn’t be done) that permeates the literature in philosophy and sociology of science. Worse yet, when asked, they positively sneer at the idea of doing philosophy or sociology of science. (Pigliucci 2002: 247)

This lack of understanding of philosophy and sociology of science by scientists is, of course, at the root of … scientism … [When] a scientist of the caliber of Noble Prize-winning physicist Steven Weinberg can even go so far as writing a book chapter entitled “Against Philosophy,” in which he argues that philosophy is not only useless, but positively harmful to the scientific enterprise … [we see a] sort of hubris that offends many [religionists] … (not to mention philosophers), and they have every right to be offended. (Pigliucci 2002: 247)

Computability and Economics

If the economy is driven by one individual choice after another in response to prices, this should be capable of being modelled on a computer. In the words of an eminent economist, consumer choice can be likened to a computer ‘into whom we “feed” a sequence of market prices and from whom we obtain a corresponding sequence of “solutions” in the form of specified optimum positions’. The ranking of preferences determines the market choices of economic man. Arriving at this ranking can be modelled as a sequence of pairwise comparisons, for example, making a choice between strawberry and vanilla flavours (taking price into account), and comparing likewise all other options in sequence until the budget is exhausted. Such choices can be embodied in an algorithm (a calculation procedure) to run sequentially on a computer and provide a numerical result.  (Offer and Söderberg 2019, 263)

But there is a snag: some algorithmic problems cannot be solved by a digital computer. They either take too long to compute, are impossible to compute (that is, are ‘non-computable’), or it is unknown whether they can be computed. For example, the variable of interest may increase exponentially as the algorithm moves sequentially through time. A generic computer (known after its originator as a ‘Turing machine’, which can mimic any computer) fails to complete the algorithm and never comes to a halt. Such problems can arise in deceptively simple tasks, for example, the ‘travelling salesman problem’, which involves calculating the shortest route through several given locations, or designing efficient networks more generally. For every incremental move, the time required by the computer rises by a power: there may be a solution, but it requires an impossible length of time to compute. In a more familiar example, encryption relying on the multiplication of two unknown prime numbers can be broken, but relies on solutions taking too long to complete. (Offer and Söderberg 2019, 263-264)

The clockwork consumer maximizes her innate preferences in response to market prices. But there is a flaw in the design: the clockwork may not deliver a result. It may have to run forever before making a single choice. This has been demonstrated formally several times. The ordering of individual preferences has been claimed to be ‘non-computable’, and Walrasian general equilibrium may be non-computable as well. Non-computability in economics is little cited by mainstream scholars. On the face of it, it makes a mockery of the neoclassical notions of rationality and rigour, both of which imply finality. Economics however averts its gaze. In practice, since standard microeconomics has never aspired to realism, it may be a reasonable response to say that it has formalisms that work, and that they constitute ‘horses for courses’. But what cannot be claimed for such formalisms is a unique and binding authority in a theoretical, empirical, policy-normative sense, in the way that scientific consensus is binding. (Offer and Söderberg 2019, 264-265)

Computation rears its head several times in Nobel economics. In the second Nobel Lecture, Ragnar Frisch described the task of the economist as validating and executing policy preferences by feeding them into computer models of the economy, and Milton Friedman expressed a similar idea in his Nobel Lecture of 1976. Hayek (NPW, 1974) made his mark in the ‘socialist calculation debate’. Defenders of socialist planning (and of neoclassical economics) in the 1920s and 1930s argued that private ownership was not crucial: socialism could make use of markets, and that the requirements for socialist calculation were no more onerous than the ones assumed for neoclassical general equilibrium. From then onwards, the debate should really be called ‘the neoclassical calculation debate’. Joseph Stiglitz (NPW, 2001) perversely framed a devastating demolition of general equilibrium economics as a criticism of market socialism. Kenneth Arrow (NPW, 1972), an architect of general equilibrium, pointed out (against general equilibrium) that in terms of computability, every person is her own ‘socialist planner’—the task of rationally ordering even private preferences and choices (which Hayek and economics more generally takes for granted) looks too demanding. Under general equilibrium, if even a single person is in a position to set a price (as opposed to taking it as given), ‘the superiority of the market over centralized planning disappears. Each individual agent is in effect using as much information as would be required by a central planner.’ (Offer and Söderberg 2019, 265)

In response to the socialist neoclassical defence, Hayek and his supporters questioned the very possibility of rational calculation. Hayek acknowledged the interdependence of all prices. But the consumer and entrepreneur did not need to be omniscient, just to make use of local price signals and local knowledge to price their goods and choices. The problem was not the static once-and-for-all efficiency of general equilibrium, but coping with change. The prices obtained fell well short of optimality (in the Pareto general equilibrium sense).29 Hayek implied that this was the best that could be achieved. But how would we know? Joseph Stiglitz (NPW, 2001) does not think it is. Regulation can improve it. Hayek’s position fails as an argument against socialism: if capitalism can do without omniscience, why not a Hayekian market socialism without omniscience? A key part of Mises’s original argument against socialism in 1920 was that that entrepreneurs require the motivation of profit, and that private ownership of the means of production was indispensable. But advanced economies are mixed economies: they have large public sectors, in which central banking, social insurance, and infrastructure, typically more than a third of the economy, are managed by governments or not-for-profit. They would be much less efficient to manage any other way. In Britain, for example, with its privatized railways, the biggest investment decisions are still reserved for government: the rails are publicly owned, the trains are commissioned and purchased by government, and a major high speed line project (HS2) can only be undertaken by government. Despite Hayek, smaller public sectors are not associated with more affluent economies: The expensive Nordic Social Democratic societies demonstrate this. (Offer and Söderberg 2019, 265-266)

Herbert Simon (NPW, 1978) pointed out that individuals could not cope with the computational challenges they faced. They did the best they could with what they had, which he called ‘bounded rationality’. The problem also appears in behavioural economics, where NPWs Allais, Selten, Kahneman, Smith, and Roth have all shown that real people diverge from the norms of rational choice, and that outcomes are therefore unlikely to scale up to ‘efficient’ equilibria. In a letter to the non-computability advocate Vela Velupillai, Simon spelled out the different degrees of cognitive capacity: There are many levels of complexity in problems, and corresponding boundaries between them. Turing computability is an outer boundary, and as you show, any theory that requires more power than that surely is irrelevant to any useful definition of human rationality. A slightly stricter boundary is posed by computational complexity, especially in its common ‘worst case’ form. We cannot expect people (and/or computers) to find exact solutions for large problems in computationally complex domains. This still leaves us far beyond what people and computers actually CAN do. The next boundary, but one for which we have few results … is computational complexity for the ‘average case’, sometimes with an ‘almost everywhere’ loophole [that is, procedures that do not apply in all cases]. That begins to bring us closer to the realities of real-world and real-time computation. Finally, we get to the empirical boundary, measured by laboratory experiments on humans and by observation, of the level of complexity that humans actually can handle, with and without their computers, and—perhaps more important—what they actually do to solve problems that lie beyond this strict boundary even though they are within some of the broader limits. The latter is an important point for economics, because we humans spend most of our lives making decisions that are far beyond any of the levels of complexity we can handle exactly; and this is where … good-enough decisions take over. (Offer and Söderberg 2019, 266-267)

This problem was also acknowledged by Milton Friedman (NPW, 1976). Surprisingly for a Chicago economist, he conceded that optimizing was difficult. His solution was to proceed ‘as if’ the choice had been optimized, without specifying how (the example he gives is of the billiards player, who implicitly solves complicated problems in physics every time he makes a successful shot). Asymmetric information, at the core of bad faith economics, is partly a matter of inability to monitor even the moves of a collaborator or a counter-party. The new classical NPW economists (Lucas, Prescott, and Sargent) avoid the problem of computational complexity (and the difficulty of scaling up from heterogeneous individuals) by using a ‘representative agent’ to stand for the whole of the demand or supply side of the economy. Going back to where we started, ‘imaginary machines’, the reliance on models (that is, radically simplified mechanisms) arises from the difficulty of dealing with anything more complicated. (Offer and Söderberg 2019, 267)

All this is just another way of saying that on plausible assumptions, the market-clearing procedures at the heart of normative economics (that is, its quest for ‘efficiency’) cannot work like computers. Having failed in the test of classic analysis, theory fails the test of computability as well. This suggests that actual human choices are not modelled correctly by economic theory, but are made some other way, with as much calculation as can be mustered, but also with short-cuts, intuitions, and other strategies. This is not far-fetched. Humans do things beyond the reach of computers, like carry out an everyday conversation. Policy is not made by computers, not by economists, but by imperfect politicians. Perhaps it is wrong to start with the individual—maybe equilibrium (such as it is) comes from the outside, from the relative stability of social conventions and institutions. This indeterminacy provides an analytical reason why understanding the economy needs to be pragmatic, pluralistic, and open to argument and evidence; an economic historian would say that we should embrace empirical complexity. Policy problems may be intractable to calculation, but most of them get resolved one way or another by the passage of time. History shows how. This may be taken as endorsing the pragmatism of Social Democracy, and of institutional and historical approaches which resemble the actual decision processes.  (Offer and Söderberg 2019, 267-268)

If economics is not science, what should we make of it? Economics has to be regarded as being one voice among many, not superior to other sources of authority, but not inferior to them either. In that respect, it is like Social Democracy. It commands an array of techniques, the proverbial ‘toolkit’ which economists use to perform concrete evaluations, including many varieties of cost-benefit analysis. It has other large assets as well: a belief system that commands allegiance, passion, commitment, groupthink, and rhetoric. Its amorality attracts the powerful in business, finance, and politics. It indoctrinates millions every year in universities, and its graduates find ready work in think tanks, in government, and in business. The press is full of its advocates. As an ideology, economics may be resistant to argument and evidence, but it is not entirely immune to them. Its nominal allegiance to scientific procedure ensures that the discipline responds to empirical anomalies, albeit slowly, embracing new approaches and discarding some of those that don’t seem to work. (Offer and Söderberg 2019, 268, emphasis added)

How Economics Lost Sight of Its Goal

Back in Ancient Greece, when Xenophon first came up with the term economics, he described the practice of household management as an art. Following his lead, Aristotle distinguished economics from chrematistics, the art of acquiring wealth—in a distinction that seems to have been all but lost today. The idea of economics, and even chrematistics, as an art may have suited Xenophon, Aristotle and their time, but two thousand years later, when Isaac Newton discovered the laws of motion, the allure of scientific status became far greater. Perhaps this is why, in 1767—just 40 years after Newton’s death—when the Scottish lawyer James Steuart first proposed the concept of ‘political economy’, he defined it no longer as an art but as ‘the science of domestic policy in free nations’. But naming it as a science still didn’t stop him from spelling out its purpose (Raworth 2017, 28-29, Kindle Edition):

The principal object of this science is to secure a certain fund of subsistence for all the inhabitants, to obviate every circumstance which may render it precarious; to provide every thing necessary for supplying the wants of the society, and to employ the inhabitants (supposing them to be free-men) in such a manner as naturally to create reciprocal relations and dependencies between them, so as to make their several interests lead them to supply one another with their reciprocal wants (Raworth 2017, 29, Kindle Edition).

A secure living and jobs for all in a mutually thriving community: not bad for a first stab at defining the goal (despite the tacit disregard of women and slaves that came with the times). A decade later, Adam Smith had a go at his own definition but followed Steuart’s lead in considering political economy to be a goal-oriented science. It had, he wrote, ‘two distinct objects: to supply a plentiful revenue or subsistence for the people, or, more properly, to enable them to provide such a revenue or subsistence for themselves; and secondly, to supply the state or commonwealth with a revenue sufficient for the public services’. This definition not only defies Smith’s ill-deserved modern reputation as a free-marketeer but also keeps its eyes firmly on the prize by articulating a goal for economic thought. But it was an approach that would not last (Raworth 2017, 29, Kindle Edition).

Seventy years after Smith, John Stuart Mill’s definition of political economy started the shift in focus by recasting it as ‘a science which traces the laws of such of the phenomena of society as arise from the combined operations of mankind for the production of wealth’. With this, Mill began a trend that others would further: turning attention away from naming the economy’s goals and towards discovering its apparent laws. Mill’s definition came to be used widely but by no means exclusively. In fact for nearly a century, the emerging science of economics was defined rather imprecisely, leading the early Chicago School economist Jacob Viner, in the 1930s, to quip simply that ‘Economics is what economists do.’ (Raworth 2017, 29, Kindle Edition)

Not everyone found that a satisfactory answer. In 1932, Lionel Robbins of the London School of Economics stepped in with intent to clarify the matter, clearly irritated that ‘We all talk about the same things, but we have not yet agreed what it is we are talking about.’ He claimed to have a definitive answer. ‘Economics,’ he declared, ‘is the science which studies human behavior as a relationship between ends and scarce means which have alternative uses.’ Despite its contortions, that definition seemed to close the debate, and it stuck: many mainstream textbooks still start with something very similar today. But although it frames economics as a science of human behaviour, it spends little time enquiring into those ends, let alone into the nature of the scarce means involved. In Gregory Mankiw’s widely used contemporary textbook, Principles of Economics, the definition has become even more concise. ‘Economics is the study of how society manages its scarce resources,’ it declares—erasing the question of ends or goals from the page altogether (Raworth 2017, 29-30, Kindle Edition).

It is more than a little ironic that twentieth-century economics decided to define itself as a science of human behaviour and then adopted a theory of behaviour—summed up in rational economic man—which, for decades, eclipsed any real study of humans, as we will see in Chapter 3. But, more crucially, during that process, the discussion of the economy’s goals simply disappeared from view. Some influential economists, led by Milton Friedman and the Chicago School, claimed this was an important step forwards, a demonstration that economics had become a value-free zone, shaking off any normative claims of what ought to be and emerging at last as a ‘positive’ science focused on describing simply what is. But this created a vacuum of goals and values, leaving an unguarded nest at the heart of the economic project. And, as every cuckoo knows, such a nest must be filled (Raworth 2017, 30, Kindle Edition).

Dumuzid and Enkimdu

This is a debate between Dumuzid, the shepherd, and Enkimdu, a minor deity associated with cultivation and here representing the interests of the farmer…. Shepherds and farmers coexisted in the Mesopotamian economy and, while they may have had their differences, in many ways their interests were complementary. (Black 2004, 40)

Here the debate is out in a dramatic context, since Inana’s brother the sun-god Utu is urging her to marry Dumuzid the shepherd (11-19), whereas Inana is more inclined to marry Enkimdu the farmer (7-10, 20-34). The shepherd insists that nothing which the farmer can offer—woven garments, bear, bread, or beans—is superior to the sheep, milk, curds, cheeses or butter that he, the shepherd, can produce. (Black 2004, 40-64)

But just at the point when the debate might have become heated, following provocation from the shepherd, the farmer declines to argue, and good-naturedly allows the shepherd to graze his sheep on the stubble of the fields, and to water his flocks in the farmer’s canal. The two end up friends, and the farmer will provide the shepherd with wheat, beans, and barley. He will also continue to bring presents for Inana, even when she is married to Dumuzid. (Black 2004)

Translation

20-34 ‘The shepherd shall not marry me! He shall not make me carry his garments of new wool. His brand new wool will not influence me. Let the farmer marry me, the maiden. With the farmer who grows colourful flax, with the farmer who grows dappled grain ….’

35-9 These words … the shepherd, Dumuzid … to say …:

40-54  ‘In what is the farmer superior to me …? Enkimdu, the man of the dykes and canals—in what is that farmer superior to me? Let him give me his black garment, and I will give the farmer my black ewe for it. Let him give me his white garment, and I will give the farmer my white ewe for it. Let him pour me his best beer, and I will pour the farmer my yellow milk for it. Let him pour me his fine beer, and I will pour the farmer my soured (?) milk for it. Let him pour me his brewed bear, and I will pour the farmer my whipped milk for it. Let him pour me his beer shandy, and I will pour the farmer my … milk for it.

55-64 ‘Let him give me his best filtered beer, and I will give the farmer my curds (?). Let him give me his best bread, and I will give the farmer my … milk for it. Let him give me his little beans, and I will give the farmer my small cheeses for them. After letting him eat and letting him drink, I will even leave extra butter for him, and I will leave extra milk for him. In what is the farmer superior to me?

65-73  He was chearful, he was chearful, at the edge of the river bank, he was chearful. On the riverbank, the shepherd on the riverbank, now the shepherd was even pasturing the sheep on the riverbank. The farmer approached the shepherd there, the shepherd pasturing the sheep on the riverbank; the farmer Enkimdu approached him there, Dumuzid … the farmer, the king of dyke and canal. From the plain where he was, the shepherd from the plain where he was provoked a quarrel with him; the shepherd Dumuzid from the plain where he was provoked a quarell with him.

74-9 ‘Why should I compete against you, shepherd, I against you, shepherd, I against you? Let your sheep eat the grass of the riverbank, let your sheep graze on my stubble. Let them eat grain in the jewelled (?) fields of Unug, let you kids and lambs drink water from my Surungal canal.’

80-3 ‘As for me, the shepherd: when I am married, farmer, you are going to be counted as my friend. Farmer Enkimdu, you are going to be counted as my friend, farmer, as my friend.’

84-7 ‘I will bring you wheat, and I will bring you beans; I will bring you two-row barley from the threshing-floor. And you, maiden, I will bring you whatever you please, maiden Inana, … barley or … beans.’

88-9 The debate between the shepherd and the farmer: maiden Inana, it is sweet to praise you! (Black, Jeremy et. al., eds. The Literature of Ancient Sumer. Oxford: Oxford University Press; 2004.)